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Abstract—Addressing the challenge of achieving both high 

accuracy and real-time processing in infrared target detection 

tasks within complex electrical scenarios, a lightweight 

YOLOv5s-based algorithm is designed for the detection of 

infrared electrical equipment. Initially, MobileNetV3 is 

employed to replace the backbone network of YOLOv5s, 

accelerating detection and facilitating network light-weighting. 

Subsequently, in the Neck part, the GSConv convolutional 

module is designed to fuse multi-channel feature information, 

and the EMA attention mechanism is incorporated, enhancing 

the recognition capability of electrical equipment while 

maintaining a lightweight model. Finally, the MpDIou loss 

function is utilized in place of the original loss function, 

improving the network's prediction accuracy. The improved 

model achieves a mAP of 94.58% on a self-constructed dataset, 

reduces GFLOPs to 3.0, and reaches a detection speed of 96FPS, 

indicating a 1.29% increase in mAP, an 81.7% reduction in 

GFLOPs, and a 37.9% improvement in detection speed 

compared to the original YOLOv5s model. Experimental results 

demonstrate that the enhanced YOLOv5s model effectively 

improves the accuracy and speed of infrared electrical 

equipment recognition while being lightweight, making it easy 

to deploy and meeting the demands of practical inspection 

scenarios.. 

Keywords—Power equipment; Infrared images; Lightweight 

network; YOLOv5s; GSConv; Attention mechanism 

I. INTRODUCTION 

As substations continue to develop and be constructed, 
infrared imaging technology has been widely applied in the 
inspection of electrical equipment to improve detection 
efficiency and reliability, and to reduce the risk of potential 
faults[1]. Compared to visible light images, infrared images 
have the advantage of stronger penetration and are less 
affected by external weather conditions and lighting, allowing 
for the timely acquisition of the status information of electrical 
equipment[2-3]. This capability effectively prevents electrical 
faults caused by equipment overheating. Previous methods of 
infrared image recognition focused primarily on image 
processing, utilizing texture features, statistical features, and 
temperature distribution characteristics to identify electrical 
equipment within infrared images[4-6]. Most of these 
machine learning methods[7-9] can detect electrical 
equipment, but they do not balance accuracy and speed well, 
resulting in low detection precision or high computational 
requirements, which are not conducive to online inspection. 
Deep learning image recognition algorithms, however, can 
assist in the recognition of a large volume of images, and 
many scholars have conducted extensive work on combining 
deep learning with infrared image recognition[10-14]. Liu 

Yangfan et al. [15]proposed an improved YOLOv4 method 
for detecting weak infrared targets in space, meeting the needs 
of space infrared weak target detection tasks, yet the issue of 
low recall rate remains unresolved. Wu et al. [16] presented 
the problems of target occlusion and inaccurate classification 
in actual collected infrared images of electrical equipment, 
proposing the TA-YOLO algorithm to significantly improve 
the detection accuracy and speed of infrared targets, though 
the algorithm's detection effectiveness for small targets was 
not ideal. Jian et al. [17] added two new types of anchor boxes 
in the Faster R-CNN model to improve the detection accuracy 
of slender substation equipment. However, the introduction of 
new anchor boxes and other improvements may still result in 
high model complexity, making deployment and operation in 
resource-constrained environments challenging. 
Consequently, algorithms often need to be lightweight to meet 
the accuracy and speed requirements of detection models on 
embedded devices. Huang et al. [18] presented an improved 
lightweight network, ResFuse-YOLO_Tiny, for efficient 
detection of small infrared targets. By employing techniques 
such as expanded receptive fields, feature reuse, and attention 
mechanisms, it significantly improved detection accuracy in 
resource-limited scenarios, but deploying in edge device 
scenarios may still encounter computational and storage 
resource limitations.  

Addressing these challenges, this article introduces an 
advanced lightweight infrared detection method based on 
YOLOv5s, designed to achieve model simplification while 
ensuring high accuracy. This method utilizes MobileNetV3 as 
the backbone network to hasten detection and further 
streamline the network; introduces a GSConv convolution 
module in the Neck section for the fusion of multi-channel 
feature information, alongside the integration of the EMA 
attention mechanism; and adopts the MpDIou loss function for 
more precise prediction framing. Employing a custom dataset 
for the identification of four types of electrical equipment—
insulator strings (IS), current transformers (CT), voltage 
transformers (VT), and arresters (AR)—this model promises 
accuracy and real-time performance in the detection of these 
key electrical components. 

II. METHODS 

YOLOv5 stands as a highly efficient real-time object 
detection algorithm, available in four variants: YOLOv5s, 
YOLOv5m, YOLOv5l, and YOLOv5x. Considering 
application scenarios, YOLOv5s, compared to the other three 
versions, features the simplest network structure, fastest 
operational speed, and lowest computational resource 
consumption, making it the most easily portable across 
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platforms. Consequently, it enjoys widespread application 
across various domains. The algorithm is structured into three 
main components: the Backbone as the foundational network, 
the Neck for aggregating multi-layered feature information 
from images, and the Head for predicting the location and 
category of objects. Initially, the algorithm employs the 
backbone network to extract features from the input image; 
subsequently, it leverages the neck network to amalgamate 
multi-layered feature information; finally, through different 
scaled detection heads, it predicts the objects' location and 
category, further refining the prediction by employing the 
Non-Maximum Suppression (NMS) algorithm to select the 
optimal prediction boxes. 

The primary research focus of this paper is on improving 
the YOLOv5s model, which has the shallowest depth and 
width among the models. The overall structure is shown in  
Fig. 1. Firstly, this paper replaces the backbone network of the 
original YOLOv5s with MobileNetV3 to accelerate detection 
and achieve network lightweighting; secondly, in the Neck 
section, the GSConv convolution module is designed to fuse 
multi-channel feature information and incorporate the EMA 
attention mechanism. This approach not only maintains the 
model's lightweight but also better integrates multi-scale 
features by adaptively increasing the weight of key features to 
enhance the recognition capability of electrical equipment; 
finally, we use the MpDIou loss function to replace the 
original CIoU loss function, making the final prediction frame 
closer to the real frame and improving the network's 
prediction accuracy. 
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 Fig. 1. The structure of the improved YOLOv5s. 

III. IMPROVEMENT OF YOLOV5S ALGORITHM 

A. Replacing the backbone network 

This paper replaces the original YOLOv5s backbone 
network with MobileNetV3 to speed up detection and network 
lightweighting. In 2019, Howard and others introduced the 
MobileNetV3 network, which inherits the depth-wise 
separable convolution from MobileNetV1 and the inverted 
residual structure with linear bottlenecks from MobileNetV2. 
It also utilizes the NetAdapt algorithm to search and optimize 
the number and size of convolution kernels and channels, and 
incorporates the SE (Squeeze-and-Excitation) lightweight 

attention mechanism into network construction. In this paper, 
the MobileNetV3-Small structure is adopted as the improved 
backbone network for YOLOv5s, and the structure of 
MobileNetV3-Small is shown in  Fig 2. 

F

C

Block×11

128×128

256×256512×512
64×64 32×32 16×16

16×16

Input

MobileNetv3-Small

 
Fig. 2. Structure of MobileNetV3-Small module. 

The MobileNetV3-Small architecture comprises 11 
blocks, each featuring one of two unique configurations, as 
shown in Fig 3. Observing  Fig 3a reveals that the process 
begins with a 1x1 convolution, aimed at reducing the feature 
map's channel count. This step is followed by a depthwise 
separable convolution aimed at decreasing computational 
demands, with n being either 3 or 5. Unlike standard 
convolution where each kernel processes every channel of the 
feature map, depthwise separable convolution assigns 
individual kernels to individual channels, thereby 
significantly lowering computational expenses. Post 
depthwise separable convolution, a 1x1 convolution is 
employed to define the channel count and consolidate the 
features. The concluding step involves summing the outputs 
from both paths to generate the cumulative feature map. This 
specific configuration, depicted in  Fig. 3a, is utilized in the 
second and third blocks of the MobileNetV3-Small model. 
The rest of the blocks adhere to the Structure2, as seen in  Fig. 
3b. Upon comparison of  Fig. 3a and 3b, it's apparent that the 
latter integrates the SE module , which functions to augment 
the semantic relevance of the target region. 
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 Fig. 3. Two different structures in the MobileNetV3 module. 

B. Neck improvement 

Building on the lightweighting of the YOLOv5s backbone 
network, while significantly enhancing detection speed, a 
certain degree of accuracy in recognizing electrical 
equipment has been compromised. To address this, the study 
employs the efficient GSConv to extract more diverse 
channel information across scales, effectively boosting the 
Neck's capability to fuse multi-level semantic features. The 
structure of the GSConv module is depicted in  Fig 4. The 
GSConv module enables better integration and utilization of 
multi-channel feature information while minimizing the 
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consumption of computational resources. This allows the 
detection network to enhance its perception of features across 
different scales and abstraction levels at a lower 
computational cost, thereby increasing the accuracy of object 
detection. 
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 Fig. 4. GSConv Module Structure 

To tackle scenarios commonly surrounded by complex 
background objects such as support steel frames and heating 
buildings around electrical equipment, and to enhance model 
performance and processing speed, the Efficient Multi-scale 
Attention (EMA) module is introduced. The EMA module is 
a parallel attention mechanism designed for computer vision 
tasks, aimed at boosting model performance and processing 
speed. In contrast to the sequential processing mode of 
traditional Convolutional Neural Networks (CNNs), it 
processes input data simultaneously through its parallel 
structure. This parallel processing approach not only 
accelerates the model training process for large datasets, 
effectively reducing the required amount of parameters and 
computational costs but also enhances the model's 
recognition accuracy by processing features of different 
scales in parallel. The structure of EMA is illustrated in  Fig 
5, where "g" represents the divided groups, "X Avg Pool" 
stands for 1D horizontal global pooling, and "Y Avg Pool" 
represents 1D vertical global pooling, respectively. 

By integrating the GSConv and EMA (Efficient Multi-
scale Attention) modules in the design of the Neck section, 
not only is the ability of the model to process multi-scale 
features in complex backgrounds enhanced while 
maintaining a lightweight network structure, but also the 
adaptive adjustment of feature weights further improves the 
recognition capabilities for electrical equipment. 
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 Fig. 5. EMA Network Structure 

C. Replace loss function 

Infrared images of electrical equipment are often captured 
under conditions of low contrast and noise. Additionally, due 
to the similarity in contour features of equipment such as 
current transformers and surge protectors, enhancing 
detection performance is particularly important. The 
regression loss function used in YOLOv5 is CIoU, which does 
not consider the orientation between the true and predicted 
boxes, leading to slower convergence and inferior inference 
performance. Therefore, this paper substitutes the loss 
function with MpDIou, whose primary function is to measure 
the distance between the network's predictions and the 
required information. This change is expected to improve the 
accuracy and robustness of the model for the task of 
recognizing electrical equipment in infrared images. 

Mpdiou,which incorporates all relevant factors from 
existing loss functions, serves as a metric for comparing the 
similarity of bounding boxes, based on the minimum distance 
between points. Mpdiou streamlines the process of comparing 
two bounding boxes, applicable to both overlapping and non-
overlapping scenarios in bounding box regression. 
Consequently, Mpdiou offers a viable substitute for the 
intersection-over-union (IoU) metric across various 
performance evaluations in 2D/3D computer vision tasks. 
Additionally, it simplifies calculations by minimizing the 
distances between the top-left and bottom-right points of the 
predicted and actual bounding boxes. The computation of 
Mpdiou is as follows. 

��� = ���� − ��	
� + ���� − ��	
� �1
 
d�� = ���� − ��	
� + ���� − ��	
� �2
 

MpDIou = � ∩ �
� ∪ � − ���

�� + ℎ� −
���

�� + ℎ� �3
 
In Eqs. (1)~(3) d1, d2 denote the intersection and 

minimum point distance,the arbitrary shapes A and B are 
subsets within a larger set S that is defined in an n-dimensional 

real space, denoted as Rn: A, B ⊆ S ∈ Rn, w and h are the 
width and height of the input image, respectively and MpDIou 
is the output.Let���	, ��	
, ���	, ��	
denote the coordinates of 
the upper left and lower right points of A. Let 
����, ���
, ����, ���
 denote the coordinates of the upper left and 
lower right points of B, respectively. 

IV. EXPERIMENT AND RESULT ANALYSIS 

A. Production of datasets 

The absence of public infrared datasets for substation 
equipment necessitated the manual acquisition of a diverse set 
of infrared power equipment images, using a handheld 
thermal imager at a 220kV substation in Handan city. The 
dataset encompasses electrical components such as Current 
Transformers (CT), Voltage Transformers (VT), Arresters 
(AR), and Insulator Strings (IS).A dataset of 1086 images was 
compiled by photographing the substation at various times, 
angles, and distances.To mitigate model overfitting and 
enhance generalization, data augmentation techniques such as 
mosaic, flipping, scaling, translating, and noise addition were 
implemented. Images were annotated with the LabelImg tool. 
The dataset was split into training, validation, and test subsets 
in a 7:2:1 ratio. This split resulted in 3123 training images, 783 
validation images, and 1667 test images. Sample images are 
presented in Fig. 6. 
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Fig. 6. Partial Samples 

B. Environment configuration and evaluation indicators 

The experiments were conducted on the Hengyuan 
Zhixiang cloud computing center platform, with all deep 
learning models implemented using the PyTorch framework. 
The training and testing of the experimental data were carried 
out on servers equipped with NVIDIA GeForce RTX 2060 
SUPER (GPU), 32G of computer memory, and Compute 
Unified Device Architecture (CUDA) version 11.7.0. During 
model training, the number of epochs was set to 300, with a 
batch size parameter of 16. 

This study utilizes metrics such as Average Precision 
(AP), mean Average Precision (mAP), Frames Per Second 
(FPS), and Giga Floating Point Operations per Second 
(GFLOP) to evaluate model performance. It also refers to 
precision (P) and recall (R), with their expressions shown in 
equations (4) and (5), respectively. AP is the area under the P-
R curve, as depicted in equation (6). mAP represents the 
average of AP across all categories, as shown in equation (7), 
where n is the number of categories.GFLOP is used to 
measure the complexity of a model or algorithm. Generally, 
the smaller the GFLOP, the less computational power the 
model requires, the lower the hardware specifications needed, 
making it easier to deploy on lower-end devices. FPS indicates 
the speed at which the model processes image frames per unit 
of time. 

� =  �
 � + !� �4
 

                        

# =  �
 � + !$ �5
 

Where in the formulas: TP represents true positives, FP 
represents false positives, and FN represents false negatives. 

�� = &  
�

(
��#
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*�� = ∑  ,-.( ���/

0 �7
 

C. Result analysis 

In terms of deep learning, the magnitude of the loss 
function reflects the discrepancy between the final prediction 
of the object detection model and the actual values. It can be 
used to assess the quality of the training process, the degree 
of model convergence, and whether overfitting is present. To 
verify whether the improved YOLOv5s model enhances the 
performance of the network model, this study conducts epoch 
training on both the original and the improved models using 
the same dataset. The experiment data are then compared and 
analyzed. The curve showing the change of train/batch loss 
over the number of iterations is presented in  Fig. 7. By 
analyzing the curve in Figure 7, the results of the model 
comparison can be realized. 

 
Fig. 7. Train/bos loss variation curve 

As observed from  Fig. 7, both models exhibit a rapid 
decline in the initial phase of training, eventually stabilizing, 
but the loss function of the improved YOLOv5 decreases 
faster than that of the original YOLOv5 model. The EIou 
Loss curve of the network models before and after 
improvement tends to stabilize at 250 epochs, with the model 
converging once the loss value reaches 0.018. With the same 
number of training epochs, the improved model exhibits a 
lower loss function value, indicating a stronger ability to learn 
features with less loss of detail. 

During the training process, the mAP metric can often 
reflect the effectiveness of the object detection model's 
training. In this study, the value of mAP@0.5 is used to 
evaluate model performance, with performance changes 
depicted in the following  Fig. 8, where the blue and red lines 
represent YOLOv5s and YOLOv5s-ours, respectively. 

 
Fig. 8. mAP@0.5 variation curve 

As illustrated in  Fig. 8, the mAP values of both the 
original YOLOv5s and the improved YOLOv5s model 
exhibit varying degrees of fluctuation, but they generally rise 
steadily and start to converge around 270 epochs. After 
reaching a relative stability, the mAP values of the improved 
YOLOv5s model consistently exceed those of the original 
YOLOv5s model, indicating that the improved model has a 
slight increase in mAP value compared to the original 
YOLOv5s model, with an increase of 1.29%. Next, a detailed 
analysis of the detection outcomes for the four types of 
electrical equipment, namely current transformers, voltage 
transformers, surge arresters, and insulator strings, is 
conducted. The accuracy rates before and after improvement 
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for each category of electrical equipment are presented in 
Table 1. 

TABLE 1. ACCURACY BEFORE AND AFTER IMPROVEMENT 

Equipment type 
Accuracy before 

improvement/% 

Accuracy after 

improvement/% 

CT 91.34 92.82 
VT 91.93 93.23 
AR 94.65 95.84 
IS 96.84 97.82 
Amount to 93.56 94.85 

 Fig. 9 displays the detection results of the proposed 
method on a subset of the test set. Specifically, Fig. 9(a), 9(b), 
9(c), and 9(d) individually showcase the detection results for 
Voltage Transformers (VT), Current Transformers (CT), 
Insulator Strings (IS), and Surge Arresters (AR), 
respectively. Fig. 9(e) and 9(f) present the detection outcomes 
within the complex background of a substation. It can be 
observed that utilizing the improved algorithm not only 
achieves model lightweighting but also enables electrical 
equipment to be detected accurately with high confidence 
levels. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 9. Model detection effect 

D. Ablation experiment 

To evaluate the impact of various module modifications 
on the optimization of algorithm performance in detecting 
power equipment in infrared images, a series of ablation 
experiments are conducted using YOLOv5s as the baseline. 
These experiments aim to meticulously explore how each 
modification enhances detection effectiveness. To ensure the 
consistency and comparability of the experiments, all are 
carried out under a fixed experimental environment and 
parameter configuration.Symbol ① denotes the use of the 
MobileNetv3-Small network to replace the YOLOv5s 
backbone extraction network; ② represents the combination 
of GSConv and EMA attention modules in the Neck section 
for improvement; ③ signifies the replacement of the CIoU 

loss function with MpDIou, with the experimental results 
presented in Table 2. 

TABLE 2 RESULTS OF ABLATION EXPERIMENT 

① ② ③ mAP/% FPS GFLOP 

× × × 93.56 69.6 16.4 

√ × × 92.83 102 3.2 

× √ × 94.48 81.0 15.6 

× × √ 93.97 72.5 16.7 

√ √ √ 94.85 96 3.0 

Table 2 indicates that substituting the backbone extraction 
network with the MobileNetv3-Small network resulted in a 
slight decrease in mAP. However, the detection speed of the 
network improved by 46.5%, and the GFLOPs decreased by 
80.4%. This suggests that using the MobileNetv3-Small to 
replace the backbone network can significantly reduce the 
model's parameters, thus achieving model lightweighting. 
After improvements were made in the Neck section using a 
combination of GSConv and EMA attention modules, there 
was a slight increase in detection speed and a 0.92% increase 
in mAP, along with a 4.8% reduction in GFLOPs. The 
substitution of the loss function with MpDIou resulted in a 
0.41% increase in mAP, achieving the anticipated results. 
With the implementation of these three improvement 
strategies to the YOLOv5 model, a balance was attained 
between the model's detection accuracy and speed. The 
improved model's mAP reached 94.85%, which is a 1.29% 
improvement from before the improvements, and the 
detection speed reached 96FPS, marking a 37.9% increase 
from prior, with GFLOPs being reduced by 81.7%. 
Consequently, the improvement strategies employed in the 
experiments are demonstrably viable. 

E. Comparing experiments  

To assess the efficacy of the improved model, this paper 
conducts comparative experiments with commonly used 
lightweight networks, including ShuffleNet and GhostNet, in 
addition to the MobileNetv3 replacement. According to the 
results in Table 3, YOLOv5s with MobileNetV3, despite 
having the lowest mAP among the models tested, has the 
smallest number of parameters, the lowest GFLOPS, and the 
fastest image processing speed. In summary, MobileNetV3 
offers a solution that significantly enhances efficiency within 
an acceptable accuracy range, particularly in terms of 
parameter count and computational efficiency, making it 
highly suitable for fast and lightweight real-time detection 
applications. 

TABLE 3 COMPARISON OF LIGHTWEIGHT MODELS 

Model 
Parameter  
quantity 

GFLOPS FPS mAP/% 

YOLOv5s 7035809 16.2 69.6 93.56 

YOLOv5s- 
MobileNetV
3 

1494522 3.2 102 92.83 

YOLOv5s- 
ShuffleNet 

3802589 7.9 88.3 93.12 

YOLOv5s- 
GhostNet 

2378104 5.3 93 92.94 
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To validate the superiority of the improved YOLOv5s 
algorithm, a series of comparative experiments were 
conducted. Four other common object detection algorithms 
were selected for comparison, including Faster R-CNN, SSD, 
YOLOv4, and the original YOLOv5s. These algorithms were 
trained and tested on the same experimental platform, with 
various evaluation metrics presented in Table 4. 

As discernible from Table 4, it is evident that different 
models exhibit varied levels of proficiency in identifying 
different categories of electrical equipment. While Faster R-
CNN demonstrated commendable mAP accuracy on the 
custom dataset, the model's considerable weight makes it less 
deployable. In contrast, the modified YOLOv5 not only boasts 
a smaller model size but also surpasses other models in mAP 
accuracy. Notably, the AP results for current transformers and 
voltage transformers have improved significantly over the 
original YOLOv5s, underscoring the proposed method's 
enhanced effect in feature extraction and its efficacious 
detection of electrical equipment with similar contours. 

TABLE 4  COMPARATIVE EXPERIMENTS OF DIFFERENT MODELS 

Model 
mAP/

% 
Size/M 

AP/% 

CT VT AR IS 

Faster-
RCNN 

93.24 246.7 90.96 91.87 93.68 96.46 

SSD 91.91 86.4 91.45 88.78 94.05 93.34 

YOLOv4 92.29 62.9 90.25 90.97 93.39 94.56 

YOLOv5s 93.56 22.4 91.34 91.93 94.65 96.84 
Our-

YOLOv5s 
94.85 4.8 92.82 93.23 95.84 97.82 

CONCLUSION 

This study proposes an infrared recognition method for 
substation equipment based on the improved YOLOv5s, 
achieving detection of a variety of substation equipment such 
as current transformers, voltage transformers, lightning 
arresters, and insulator strings. Under the premise of ensuring 
high detection accuracy in complex power scenarios, this 
study aims to minimize the model size, increase the detection 
speed, and achieve model lightweight. The improved model 
has increased the mAP by 1.29% on a self-built infrared 
dataset of power equipment, decreased GFLOP by 81.7%, and 
increased detection speed by 37.9% compared to the original 
YOLOv5s model. However, there are still some missed 
detections in complex scenarios such as overlapping targets 
and partial obstructions of electrical equipment. Future work 
will explore how to further improve the model or enhance the 
detection accuracy of infrared power equipment in similar 
scenarios through data augmentation. The improved YOLOv5 
model can be deployed on inspection robots for real-time 
processing of infrared images of substation equipment, 
significantly enhancing detection accuracy and efficiency. 
This not only reduces reliance on manual inspections but also 
has practical significance for diagnosing faults in electrical 
equipment. 
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