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Abstract— More and more devices are integrated into 

buildings, transforming them into intelligent structures that 

adapt to their occupants. Due to the large number of integrated 

systems and the continuously growing complexity, it is difficult 

for users to control these systems. This work explores the 

possibility of using smart clothes to control a building using 

hand gestures. A prototype device was developed that can be 

easily integrated into ordinary garments by making minor 

modifications. The design of the device prioritizes relatively 

small dimensions, to facilitate easy integration, low energy 

consumption, modularity, efficiency, and ease of use. Gesture 

acquisition was achieved using a 6-axis IMU (Inertial 

Measurement Unit). Classification of gestures was implemented 

directly on the wearable device using artificial intelligence (AI) 

techniques. Gesture recognition was achieved solely through 

real-time processing available on the device, adapted to limited 

computational power available, enabling controlling smart 

building systems without the need for a cloud service or internet. 

Wearing a smart device-integrated garment, the user can 

control various systems in a smart building, in an easy and more 

natural manner, using hand gestures.  

Keywords—smart clothing, smart building, gesture 

recognition, machine learning, wearable technologies  

I. INTRODUCTION 

An increasing number of individuals [1] are adopting 
smart devices that automate the buildings in which they live 
or conduct their professional activities. These devices not only 
enhance the perceived comfort of their occupants but also 
assist them in optimizing their work, operating in a better-
suited environment, or efficiently monitoring certain 
parameters to safeguard their health, such as air quality. 

In a smart building, controlling a wide range of devices [2] 
can be challenging for users due to their complexity [3]. For 
regular building occupants, controlling it often occurs in a 
non-standardized manner [4], using fixed dedicated control 
panels for some systems, buttons, remote controls, etc., for 
others. This creates difficulties due to the confusion it causes, 
the user is unsure which interfaces to use to control a particular 
system. At other times, it puts the user in the impossibility of 
efficiently controlling multiple systems simultaneously due to 
the physical distance between different control interfaces. For 
example, the temperature and air conditioning intensity are 
controlled from a control panel on a wall, while the light 
switch has certain dedicated buttons located elsewhere. 
General control panels are installed in some buildings, but 
these are usually available to the administrator who has full 
access to all systems.  

Other approaches involve controlling them through 
dedicated applications on mobile phones [5], smartwatches 
and smart bracelets [6], [7], or the utilization of new devices 
for controlling [8] or obtaining feedback [9], [10] from 

building systems. While these systems offer added 
convenience to users, they often entail diverting their attention 
from ongoing activities. Simple adjustments, like modifying 
the temperature, require several sequential steps, including 
unlocking the device, locating the relevant application, 
navigating through its interface, and finally making the 
desired adjustments. 

Some buildings employ systems that align with the 
concept of calm technology [11]. This entails designing 
technology to be at the periphery of the user's attention and 
sometimes to fade into the background. Technology designed 
using this concept aims to provide the user with a seamless 
experience without requiring them to keep it at the forefront 
of their attention. It operates in the background without 
distracting the user with constant notifications with respect to 
the user's focus. This concept entails the building 
autonomously adjusting its parameters through sensors 
integrated into specific locations from which to gather data for 
self-regulation. This eliminates the need for occupants to 
directly interact with its systems, as the building automatically 
adapts to the users' needs.  

A smart building where all integrated systems are based 
on the concept of calm technology is ideal. However, in 
practice, this is more challenging to achieve, especially in 

Fig.1. A user wearing a smart garment (top),  

detail with integrated electronic device (bottom) 
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multi-user environments. Users have different preferences and 
may prefer certain parameters to be adjusted differently than 
what seems theoretically ideal. For example, lighting, despite 
accumulated knowledge in the specialized literature [12] 
regarding color temperature [13], intensity [14], and light 
distribution based on space, activity, and other parameters, 
some building occupants may prefer a different type of 
lighting in their workspace. Hence, an efficient interaction 
method between users and the smart building systems is 
necessary to ensure that users do not feel constrained by the 
building to accept certain automatic adjustments contrary to 
their will, but rather perceive these adjustments as beneficial 
to them, who are in control. 

II. SYSTEM DESIGN 

A. Design Approach 

The objective was to develop a smart garment enabling 
user control of the systems within a smart building through 
hand gesture recognition. To accomplish this, a prototype 
device was created that could be easily integrated into clothing 
with minimal adjustments. The target was a small and 
lightweight device with low energy consumption, which can 
work independently of a cloud service or internet, as long as 
the communication with the other building systems requires 
only the local network. This would enable the occupants of 
smart buildings to control their systems, more naturally and 
easily, through hand gestures. 

B. Apparatus 

The wearable device consists of an Arduino Nano RP2040 
Connect development board [15], a voltage stabilization and 
boost circuit to 5V, a 1.5" color OLED display [16], and a 
3.7V 400mAh single cell LiPo battery that powers the device. 
The wearable device was integrated into the upper part of the 
sleeve of a garment. 

The device is adaptable according to the user's needs, 
being able to operate with or without the attached screen. In 
the screenless mode, its weight decreases to 32 grams, while 
still providing the same functionality except for visual 
indications, and 44 grams with the display. The majority of the 
weight comes from the prototyping board and the boost 
module used at this prototyping stage. Miniaturization is 
possible in a stage closer to a final version. 

The Arduino Nano RP2040 Connect offers multiple 
functionalities while maintaining a small form factor, identical 
to the Arduino Nano. Processing on this board is 
accomplished by the Raspberry Pi RP2040 [17] 
microcontroller equipped with a dual-core 32-bit Arm Cortex-
M0+ processor, ensuring fast processing and energy 
efficiency. The use of this development board is attributed to 
its excellent specifications and its suitability for wearable 
devices. It features extensive connectivity options thanks to 
the U-blox Nina W102 module [18]. This module can be 
programmed to function as a Bluetooth 4.2 radio or as a Wi-Fi 
compatible with the IEEE 802.11b/g/n single-band standard. 
Communications between this module and other devices are 
made through a small integrated Planar Inverted-F Antenna 
(PIFA), maintaining overall compact dimensions. Alongside 
other modules present on board is the LSM6DSOXTR, an 
inertial measurement unit (IMU) module that includes a 3D 
gyroscope, 3D accelerometer, and a Machine Learning Core 
on chip. The data from this module will be used for gesture 
detection purposes. 

C. Smart Clothing 

Using smart clothing offers several advantages. One of 
these is increased comfort, as their use is more convenient 
compared to separate devices such as mobile phones or 
smartwatches. Another advantage is the ease of use, control is 
facilitated through gestures, eliminating the need for direct 
interaction with the devices through screen touch and button 
pressing. It reduces the risk of the device being forgotten, as it 
is permanently attached to the garment. In specific work 
environments where uniforms are utilized, the possibility of 
not having the device on hand is entirely eliminated through 
the adoption of smart uniforms integrating electronic 
components. 

D. Technical Operation and Functionalities 

From the user's perspective, the operation is 
straightforward. By using the smart garment, the user can 
control the systems of a smart building through hand gestures. 
Upon activation, an initialization text appears on the screen, 
after which the device connects to the Wi-Fi network. 
Successful connection is indicated on the screen along with 
usage instructions. To control a building system, the smart 
garment must be activated to capture the gesture and send the 
corresponding command. The smart garment is activated by 
the user through a wake-up gesture, performed by double-
tapping the active area of the garment where the electronic 
device is integrated. Once the user performs the wake-up 

Fig.2. Flow diagram of the smart garment gesture-based 

system. 
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gesture, it is analyzed onboard the device. The detected 
gesture is displayed on the screen, and the command is sent 
to the corresponding system. If the user wishes to execute a 
new command, they must repeat the wake-up gesture and 
perform the appropriate gesture for the desired command in 
the air. 

 
The device wake-up command and preparation for 

gesture detection were performed using the standard interrupt 
option on double-tap integrated into the LSM6DSOX IMU 
chip. After waking up, the user's movement is measured by 
the IMU in high-performance mode at a sampling rate of 104 
Hz. The measurement utilizes data from both the 3-axis 
accelerometer and the 3-axis gyroscope. These data are 
analyzed after the gesture is performed using the AI model 
stored in the device. As a demonstrative example, the device 
was used to control a Philips HUE lighting system [19]. The 
implemented gestures for control were: turn on, turn off, 
brightness up, brightness down, and change color. The 
turn on gesture takes the form of a vertically drawn square, 
while the turn off is accomplished by drawing a circle in the 
air. Brightness up involves a vertical plane movement, 
brightness down entails a horizontal plane movement, and 
changing colors is achieved through a horizontal semicircular 
movement. Communication between the smart garment and 
the Philips HUE system is established directly using the API 
provided by the manufacturer. The use of the device is not 
limited to a specific system. Controlling the lights is just one 
proposed scenario. 

III. GESTURE RECOGNITION 

A. ST Machine Learning Core 

There are several methods for gesture detection, as 
outlined in the specialized literature, one of which entails 
utilizing an IMU module for data acquisition and subsequent 
classification. The development board employed in this study 

is equipped with a 6-axis IMU module and a Machine 
Learning Core, providing ample capabilities for gesture 
detection and classification.  

The IMU module used is the LSM6DSOX [20], one of the 
first chips that integrate a Machine Learning Core, developed 
by STMicroelectronics. Its utilization relieves the 
microcontroller (MCU) from certain stages of IMU data 
processing and accelerates the gesture recognition process 
while simultaneously keeping a high energy efficiency. 
According to the manufacturer, power consumption is only 
550 μA in combo high-performance mode [20]. When the 
Machine Learning Core is used, the additional energy 
consumption is only 13 μA. Fast and energy-efficient 
recognition is facilitated by shifting the processing of certain 
application algorithms from the main processor to the IMU 
module, which integrates specifically optimized hardware for 
efficient calculations in tasks such as pattern searching, 
motion intensity detection, and position recognition. 

The Machine Learning Core can be trained to recognize 
specific movements and patterns. This is achieved by utilizing 
up to 8 available decision trees that can be used independently 
or simultaneously. A decision tree is a hierarchical decision 
model, similar to a tree, composed of multiple configurable 
nodes, each characterized by a binary decision condition of the 
"if-then-else" type. The data from the sensor pass through 
several of these nodes and are evaluated based on various 
parameters, ultimately reaching the leaf nodes where the 
classification result resides. The use of this type of classifier 
reduces the complexity of data processing and analysis, 
provides a swift response, and can be employed even on 
devices with limited computational resources. 

Although the integrated Machine Learning Core module 
in the chip performs well with good accuracy when dealing 
with repetitive motions, such as identifying a process based on 
vibration patterns, such as water boiling when the device is 
attached to a kettle, or identifying activities like walking, 
running, or jumping, etc., when it comes to movements such 

Fig.4. Representation of the data set. 

Fig.3. The graphical representation depicts raw data from the IMU, illustrating linear accelerations and angular velocities.  
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as hand gestures forming geometric shapes or patterns drawn 
in the air, recognition accuracy decreases. 

The capability of the integrated Machine Learning 
integrated into the chip was tested on hand movements in the 
air. Data from the 3-axis accelerometer were recorded and 
saved on the device, then transferred to a computer for 
labeling and subsequent decision tree construction. The 
decision tree building was built using the official software 
from ST, called Unico GUI [21]. Additionally, the popular 
software Weka [22], widely used in machine learning and data 
mining, was also attempted for constructing the binary tree. 
Five gestures were chosen for classification by the device. 
During the training phase, the number of samples provided 
ranged from 5 to 40 for each class, depending on the training 
session, and each time was evenly distributed among the 
classes. Unfortunately, the recognition accuracy was below 
40%. After several tests, incorporating data from the 
gyroscope along with the accelerometer data, recognition 
accuracy remained low, with slight improvements compared 
to using the accelerometer exclusively. 

B. TinyML 

TinyML [23] refers to the use of machine learning 
technologies on low-power devices targeting particular 
battery-powered devices. The use of TinyML offers several 
advantages compared to cloud processing. One of these is low 
latency, as the device processes data locally using the AI 
model stored onboard, providing faster results. 
Microcontrollers generally consume little energy to operate, 
allowing these devices to function for extended periods 
powered by batteries. By eliminating the need to transfer data 
to the cloud, the requirement for an internet connection and 
data transfer is eliminated, further reducing energy 
consumption. Some devices are used in environments where 
data privacy is paramount, and in these highly secure 
environments, internet connectivity may not be available to 
prevent data breaches. In such environments, only a device 
that performs local data processing can be utilized. This 
guarantees data integrity by ensuring that the data remains 
confined within the device and eliminates the necessity for 
external transfer and the potential dangers of their 
interception. 

In order to achieve better classification accuracy, a new 
approach employed TinyML. An artificial neural network 
(ANN) algorithm was used with the assistance of the Edge 
Impulse platform to train a new model. The neural network 
architecture consists of an input layer composed of 78 
features, followed by two hidden layers with 20 and 10 
neurons, respectively, and an output layer with 5 neurons 
corresponding to each class. The model was trained to 
recognize the same five gestures as before. To train each 
gesture, a training of 10 sessions with 10 seconds per session 
was carried out, totaling 12 minutes and 10 seconds of data 
acquired in the training set. An additional 40 seconds of data 
for each gesture were acquired for model testing. The neural 
network model was trained using 50 epochs with a learning 
rate of 0.0005. After model training and cross-validation, a 
100% accuracy and a loss of 0.05 were obtained, raising 
suspicions of overfitting due to the very high accuracy. Using 
the test set, the model was evaluated, resulting in a 
classification accuracy of 98.21%. Subsequently, the model 
was downloaded and executed on the Arduino board, with an 
estimated latency of 66 ms when deployed on real hardware. 
Evaluating the model on the Arduino board demonstrated a 

good gesture classification rate using real data from the IMU, 
indicating a good performance of the model. 

IV. LIMITATIONS 

The device can manage a wide range of intelligent 
building systems, being capable of associating gestures with 
various functions. However, limitations may arise regarding 
control and compatibility with certain systems that do not 
offer publicly accessible APIs or utilize older remote control 
or wired command systems that cannot connect to local or 
internet networks. To control these systems, it is necessary to 
retrofit devices that enable remote control through the internet.  

Local processing of data from the IMU directly on the 
device enhances the device's level of data security and 
integrity. However, when a command is sent to a system, the 
security of the data relies on the type of protocol implemented 
by the API for transmitting data to the controlled equipment. 

V. CONCLUSION 

 This paper explores the use of smart clothing for 
controlling systems within a smart building. Gesture-based 
control assists individuals in interacting more easily with its 
systems, eliminating the need to physically approach a control 
panel or use other devices. A modularly designed prototype 
device was created for easy integration into garments, 
becoming an integral part of them. The created device was 
integrated into the sleeve of a garment to capture user gestures 
in the form of data from the IMU sensor. The IMU sensor 
available on the development board, in addition to providing 
acceleration and gyroscope data, also features an integrated 
Machine Learning Core capable of recognizing certain 
movements with low energy consumption. The Machine 
Learning Core utilized the decision trees method. Its 
capability was tested, but despite several attempts, the results 
were unsatisfactory for detecting the proposed gestures. To 
maintain the same user functionality, a new approach was 
adopted using TinyML. A fresh model was trained using an 
artificial neural network (ANN), resulting in an accuracy of 
98.21% when evaluated with an independent dataset distinct 
from the one employed during training. The device integrated 
into the garment can operate independently of the internet. 
Gesture recognition is achieved using the computational 
power available onboard based on the locally stored model. 

 In the future, leveraging the possibilities offered by 
integration into clothing, multiple sensors could be employed 
to measure and suggest certain adjustments, such as detecting 
excessively low temperatures in the vicinity of the individual, 
identifying strong air currents, and recommending the closing 
of nearby windows, among others. The challenge of 
integrating multiple sensors is mostly the powering of the 
entire system. This can be improved by optimizing the system 
power consumption or using energy harvesting systems to 
charge the battery but requires future research in terms of 
benefits in relation to the added weight. 
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