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Abstract— Pseudo-random number generators (PRNGs) are 

essential components in cryptographic applications, providing 

the basis for generating keys, creating digital signatures, and 

ensuring secure communications. This research explores two 

methodologies for pseudo-random number generation: the 

implementation of the Counter mode deterministic random bit 

generator (CTR_DRBG) according to the National Institute of 

Standards and Technology (NIST) specifications, and a chaos-

based pseudo-random number generator. The CTR_DRBG 

implementation utilizes a 256-bit seed and follows strict NIST 

guidelines, ensuring resistance against brute force and 

cryptanalytic attacks. In contrast, the chaos-based approach 

harnesses chaotic dynamics to generate high-quality random 

values efficiently based on a 256-bit key. By optimizing 

parameters and introducing a threshold for random bit 

generation, we prove that the chaos-based generator achieves 

superior randomness and statistical properties. 
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I. INTRODUCTION 

A wide range of domain applications are based on 
sequences of random numbers, for example, simulations (in 
fields like physics [1], [2] or engineering [3]), statistics [4]-
[6], machine learning [7], gaming [8], and especially 
cryptography [9]. Random numbers can be achieved in two 
ways [6]: (1) using a true random number generator (TRNG) 
or (2) using a pseudorandom number generator (PRNG). 
PRNGs play an important role in various cryptographic 
applications, providing a fundamental building block for 
generating keys, creating digital signatures, and ensuring 
secure communications [10]. The reliability and 
unpredictability of these generators are essential for 
maintaining the security of sensitive data and systems in 
modern digital environments, even more so in today's 
technological context, where large volumes of data are 
generated from different sources. According to [11] there are 
several types of PRNGs: linear congruential generators 
(LCG), linear feedback shift registers (LFSR), and PRNGs 
that exploit the intricate chaotic behavior in dynamic systems 
that includes principles from chaos-based cryptography.  
Chaos-based cryptography is a branch of cryptography that 
includes the principles of chaotic systems to secure 
communications [12]. Chaotic systems are highly sensitive to 
initial conditions, proving deterministic yet unpredictable 
behavior, and are non-linear dynamical systems. These 
characteristics make chaos a good foundation for developing 
cryptographic algorithms. Chaos-based cryptography has 
applications in different fields [12]: secure communications, 
pseudorandom number generation, image and video 
encryption, hash functions, secure key exchange, etc.  

In this paper we implemented the CTR_DRBG following 
NIST’s guidelines [13] and a PRNG based on the logistic map, 
one of the most used technique in chaos-based cryptography. 
The second approach is inspired from study [14] that involves 
an enhanced logistic map. Compared to [14], we refined 
parameters and changed the way in which the digits are 
generated. We prove that both implementations pass the NIST 
test suite for random and pseudorandom number generators 
[15], but the chaos-based PRNG demonstrates superior 
performance in terms of execution time. The rest of the paper 
is organized as follows: Section II presents the methods and 
tools used in this study, Section III presents the details of 
implementation for the two approaches, Section IV discuss the 
results, and Section V presents the conclusions of the study 
and further research. 

II. METHODS AND TOOLS 

A. Counter mode Deterministic Random Bit Generator 

The first tool implemented in this research is based on the 
CTR_DRBG, which is a specific type of Cryptographically 
Secure PRNG (CSPRNG) defined in NIST SP 800-90A, Rev. 
1 [13]. A CTR_DRBG needs an entropy input, has an internal 
state that stores the parameters, variables and additional 
values, and consists of the following five functions: [13] 

• Instantiate Function: Initializes the CTR_DRBG with an 
entropy-based seed, possibly enriched with a nonce and a 
personalization string, to establish its initial internal state. 

• Generate Function: Produces pseudorandom bits using the 
current state, then updates the state in preparation for 
future requests. 

• Reseed Function: Refreshes the generator by integrating 
new entropy with the existing state and any additional 
input, resulting in a rejuvenated internal state. 

• Uninstantiate Function: Securely deletes the internal state 
to prevent any subsequent recovery or misuse of the state. 

• Health Test Function: Verifies the operational integrity of 
the DRBG to ensure it continues to function as expected. 

B. Chaos Pseudo-Random Bit Generator (Chaos PRBG) 

The second tool implemented in this research explores 
chaos-based pseudo-random number generation techniques. 
In chaos-based cryptography, one of the most important map 
is the logistic map, which has the following definition [16]: 

F��x���, r
 = F��r ∙ x� ∙ �1 − x�
�,             �1
 

where the parameter r ∈ �0,4
, the initial value x� ∈ �0,1
, 
x� ∈ �0,1
, and n ∈ {1,2, … , N}, N being the number of 
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iterations. In our implementation, we used an enhanced 
logistic map proposed in [14]:  

x��� = ���

�� �!",#
                              �2
   

where FL is the logistic map defined in Eq. (1). The author 
introduces an enhanced version of the logistic map in equation 
(2) to achieve increased chaotic complexity and a broader 
chaotic range. This enhancement involves incorporating the 
chaotic sequences generated by the logistic map into a generic 
equation with heightened sensitivity, facilitated by the 
utilization of a multiplicative inverse function. By leveraging 
this approach, the proposed chaotification model exhibits 
generality and maintains a range within x∈[0,1]. Notably, the 
design choice to employ a fractional function yields improved 
statistical properties, enhancing the overall efficacy of the 
method. We chose 210 because the system requires a 
reasonable computation time, unlike higher powers, which 
would necessitate more time. 

III. THE PROPOSED METHOD  

A. Counter Mode Deterministic Random Bit Generator 

Configuration 

For the CTR_DRBG implementation, Advanced 
Encryption Standard (AES)-256 [17] was employed with the 
following parameters for instantiation, reseeding, and 
generation functions:  

• Highest Supported Security Strength: 256 bits, ensuring a 
minimum entropy level [19] 

• Block Length of AES: 128 bits 

• Key Length: 256 bits (Increases the complexity of the 
algorithm. Currently, there is no known efficient method 
to break AES-256 through brute force or other 
cryptographic means) 

• Entropy Input Length: Ranging from 256 to 1000 bits [13] 

• Maximum additional input length: 800 bits [13] 

• Seed Length: 384 bits (seed length=output length + key 
lenght) 

• Maximum number of bits per request: 4000 bits [13] 

• Reseed Interval: 100000 requests [13] 

The seed material for the CTR_DRBG was obtained using 
an entropy pool provided by the Windows operating system. 
An Application Programming Interface (API) Error! 
Reference source not found. facilitated the collection of 
entropy from diverse system data sources, including mouse or 
keyboard timing input, various system data and user data, such 
as the process ID, thread ID, system clock, system time, 
system counter, memory status, free disk clusters, and hashed 
user environment block. 

Seed Derivation and Generation Function. The initial step 
involved instantiating the CTR_DRBG to obtain the seed 
material, which was further processed through a derivation 
function to derive the seed. Subsequently, a secure generation 
function was developed to produce pseudo-random bits based 
on the derived seed. 

Periodic Reseeding for Enhanced Security. Periodic 
reseeding was implemented to address potential threats to the 
security of the DRBG seed, entropy input, or working state 

over time. By periodically refreshing the seed material, the 
security risks were mitigated, reducing the likelihood of 
compromising the data protected by cryptographic 
mechanisms employing the DRBG. 

Prediction and Backtracking Resistance. The 
CTR_DRBG implementation prioritized prediction resistance 
and backtracking resistance, ensuring robust protection 
against potential attacks attempting to predict future random 
outputs or backtrack previously generated random values. 

1) Randomness Testing Applied on CTR_DRBG 
To assess the statistical randomness of the generated 

output, we utilized the NIST SP 800–22 test suite [15]. Each 
sub-test within the NIST suite was applied to evaluate the 
randomness properties. The significance level was set to           
α = 0.01, and a test sample was considered to have passed each 
sub-test if the P-value exceeded α. A total of 20 test samples, 
each with a length of 100000 bits, were used for testing. The 
results are summarized in Table I. The minimum pass rate for 
each statistical test with the exception of the random excursion 
(variant) test is approximately = 18 for a sample size = 20 
binary sequences. The minimum pass rate for the random 
excursion (variant) test is approximately = 2 for a sample size 
= 3 binary sequences. 

B. Chaos PRBG Configuration 

For the implementation of this algorithm, we started 
with an enhanced logistic map from Eq. (2), utilizing 
Lyapunov Exponent and Fuzzy Entropy as metrics for 
assessing sensitivity and complexity, respectively.  The 
Lyapunov Exponent provides insights into the system's 
sensitivity to initial conditions, a fundamental aspect of 
chaotic behavior. By quantifying how nearby trajectories 
diverge over time, it helps gauge the unpredictability and 
chaotic nature of the system. In chaotic systems, even tiny 
differences in initial conditions can lead to vastly different 
outcomes over time. The exponent is positive so it indicates 
chaotic behavior, meaning the system is highly sensitive to 
initial conditions and unpredictable in the long term. On the 
other hand, Fuzzy Entropy offers a measure of complexity, 
capturing the irregularity and intricate patterns within the 
chaotic sequences. 

1)  Chaos-based PRBG Pseudo-Code: 

For the Chaos-based PRBG we started with the algorithm 
proposed in [14] for which we adjusted the parameters to 
optimize the performance of the chaotic variable processing 
and changed the way in which the digits are obtained. 
Input: secret key key, temporar key length temp_key_len, 
parameter r, initial value of x x(0), threshold value p 
Output: pseudo-random bits result 
1. temp_key_len=52; 
2. key_len=256; 
3. counter= key_len -temp_key_len+1; 
4. r=3.99999 
5. x(0)=0.66; 
6. p=5; 
7. for i=0 to counter do: 
8.  key1=key.Substring(i, len_temp_key) 
9.  for j=0 to len_temp_key do: 
10.   if key1(j)==’1’ then 
11.    temp_key(i)=temp_key(i)+1/2j; 
12. for i=1 to counter do: 
13.  x(i)=(x(i)+temp_key(i-1)) mod 0.99999; 
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14.  x(i)=210/2r*x(i)*(1-x(i)) mod 1; 
15.  digits=x(i).digits; 
16.  for each digit in digits do 
17.   if digit < p then 
18.    result=result+’0’; 
19.   else 
20.    result=result+’1’; 
 

The algorithm outlines the procedural steps involved in 
generating pseudo-random bits, crucial for various 
applications such as cryptography and simulation. It relies on 
the integration of a secret key to perturb the chaotic variables, 
enhancing randomness and security. The chaotic variables 
produced from the secret key exhibit a high level of 
sensitivity to even minor alterations in the key, which can be 
attributed to the chaotic perturbation operations applied 
during the process. The entropy source of this algorithm is 
represented by this key, considered as seed material, which 
must be kept secret.  The key generation process incorporates 
an Analog Ambient Light Sensor V2.1 strategically 
positioned in densely populated areas to capture dynamic 
environmental changes. The sensor data undergoes 
transformation via an Analog Digital Converter, yielding a 
two-byte digital representation. It has been observed that the 
last byte of the resulting value oscillate frequently, so the 
binary form of this byte is extracted for later use in the key 
bit component. Subsequently, the key undergoes 
segmentation into 52-bit blocks to maximize bit generation 
potential. This choice aligns with the representation of the 
fractional part of a double, which consists of 52 bits. The 
initial value of the parameter r is selected to leverage the high 
positive value of the Lyapunov exponent, ensuring precision 
in chaotic behavior. As per previous studies [14], the 
enhanced logistic map demonstrates chaotic behavior within 
the range of r values spanning 3.67 to 4. Each digit of the 
decimal part of each value of the obtained chaotic variable is 
compared with a threshold value, resulting in a bit. Using a 
256-bit key, a variable number of pseudo-random bits can be 
generated, ranging between 3075 bits and 3485 bits, 
intensifying security due to its length. Evaluation of the 
execution times of both algorithms for pseudo-random 
number generation proves the superiority of the second 
algorithm. 

 
 
 
 
 
 
 

To investigate the behavior of the Lyapunov exponent as 
a function of the system's control parameter, r, we employed 
a numerical method to generate the plot. First, we defined a 
set of values for r between 0 and 4, generating 4 million 
points to cover this interval and set initial value x=0.66. This 
fine resolution of r values allows us to observe the detailed 
behavior of the Lyapunov exponent and to identify the point 
at which it reaches its maximum. Fig. 1 demonstrates that for 
r=3.99 the Lyapunov Exponent has a value of approximately 
7.03. We chose r=3.99999 for improved precision and in 

accordance with [14]. We utilized the modulus 0.99999 in the 
calculation of x(i) to ensure that remains in the appropriate 
phase space , as well as to align with the approach outlined in 
[14]. The initial value of x=0.66 was chosen randomly. 

2)  Randomness testing applied on Chaos_PRBG 

We conducted the suite of 15 tests from NIST [15], 
configuring the same parameters as those used in testing the 
CTR_DRBG algorithm. The results are documented in 
Table I. 

IV. DISCUSSIONS 

A. Results 

In this section, we compare the results that we obtained by 
implementing CTR_DRBG and the integration of chaos-
based random number generation. The test results are captured 
in Table I. Both implementations pass all NIST tests, 
indicating that the outputs of the deterministic random bit 
generators demonstrate adequate randomness, uniform 
distribution, and complexity.  

TABLE I.  NIST SP 800-22 RESULTS 

Statictical Test 

Proportion 

CTR_DRBG 

Proportion 

Chaos PRBG 

Frequency 19/20 19/20 

Block frequency 20/20 20/20 

Cumulative Sums* 20/20 19/20 

Runs 20/20 19/20 

Longest run 20/20 19/20 

Binary matrix rank 20/20 20/20 

FFT 20/20 20/20 

Non-overlapping template.* 19-20/20 19-20/20 

Overlapping template.* 19/20 20/20 

Universal 20/20 20/20 

Approximate entropy 20/20 20/20 

Random excursions.* 3/3 1/1 

Random excursions variant.* 3/3 1/1 

Serial*  20/20 19-20/20 

Linear Complexity 18/20 20/20 

Success Counts 15/15 15/15 

 

The simplified code required for chaos-based generation 
facilitates ease of implementation and reduces computational 
overhead compared to the NIST DRBG schema. The 
introduction of a threshold for random bit generation ensures 
controlled randomness, enhancing the security and 
predictability of the generated bits. We tried to utilize the 
values of x without this threshold, but the test results were 
unsatisfactory. Only the Rank, Linear Complexity, and a few 
Non-overlapping tests passed. I employed both the complete 
value and the final 2 and 3 digits of the binary representation 
acquired from the Analog-to-Digital Converter as the 256-bit 
key. However, the last byte proved to be a better source of 
entropy. When selecting a smaller precision for r, such as 
r=3.99, the Cumulative Sums, Frequency and Runs tests 
failed. 

 
Figure 1 Lyapunov Exponent 
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B. Comparison with Related Work 

Our research draws inspiration from study [14] that 
constructed a chaos-based block cipher. While the original 
focus was on image encryption, we adapt the concept of 
chaotic variable generation, modifying parameters and 
precision to achieve superior chaotic behavior in generating 
pseudo-random numbers. By incorporating insights from 
chaos theory and optimizing parameter selection, we prove the 
quality and unpredictability of the generated random values. 
Our approach yields better results compared with related work 
[14] in certain randomness tests from the NIST test suite, as 
evidenced by improved p-values shown in Table III, 
indicating enhanced randomness and statistical properties. 

TABLE II.   

Statictical Test 

p-value Chaos-

based PRBG 

p-value chaos-

based block cipher 

Block frequency 0.5341 0.3321 

Runs 0.6371 0.2152 

Approximate entropy 0.7399 0.1782 

Serial*  0.2133 0.1265 

 

The secret keys employed in these algorithms have a 
length of 256 bits, which offers enhanced security compared 
to CTR_DRBG_128, and the chaos-based implementation 
[14], which utilizes 128-bit keys. A 256-bit key provides high 
security in cryptography making it highly difficult to break 
through brute force or other cryptanalysis methods in a 
reasonable amount of time. For instance, the total number of 
possible keys with 256 bits is approximately 2256, which is an 
extremely large value and exceeds the computing capacity of 
current computers to try all these keys in a reasonable time. 

V. CONCLUSIONS 

In this research, we have explored and developed 
cryptographic algorithms aimed at enhancing the security and 
efficiency of pseudo-random number generation. By focusing 
on two distinct methodologies, namely the Counter Mode 
Deterministic Random Bit Generator and a chaos-based 
pseudo-random number generator, we aimed to contribute to 
the advancement of cryptographic techniques.  

Looking towards future directions, our emphasis will be 
on the exploration of various parameters within the chaos-
based pseudo-random number generation algorithm. This 
exploration aims to achieve favorable results on the suite of 
NIST tests for bit streams of larger lengths. Exploring 
performance metrics beyond just execution time, such as 
scalability and memory usage, could enrich future research 
comparisons.  Additionally, we intend to implement 
enhancements to the current implementation, striving for 
improved performance and resilience. Furthermore, 
expanding the comparison to include more varieties of PRNGs 
such as Mersenne Twister, Permuted Congruential Generator 
or another algorithm proposed by NIST could offer a more 
comprehensive overview of the landscape. 
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