
979-8-3503-4929-0/24/$31.00 ©2024 IEEE

Comparative Analysis Between Counter Mode
Deterministic Random Bit Generators and Chaos-

Based Pseudo-Random Number Generators
Raluca Ionela Caran

Faculty of Information Systems and Cyber Security
Military Technical Academy “Ferdinand I”

Bucharest, Romania
raluca.caran@mta.ro

Abstract— Pseudo-random number generators (PRNGs) are

essential components in cryptographic applications, providing

the basis for generating keys, creating digital signatures, and

ensuring secure communications. This research explores two

methodologies for pseudo-random number generation: the

implementation of the Counter mode deterministic random bit

generator (CTR_DRBG) according to the National Institute of

Standards and Technology (NIST) specifications, and a chaos-

based pseudo-random number generator. The CTR_DRBG

implementation utilizes a 256-bit seed and follows strict NIST

guidelines, ensuring resistance against brute force and

cryptanalytic attacks. In contrast, the chaos-based approach

harnesses chaotic dynamics to generate high-quality random

values efficiently based on a 256-bit key. By optimizing

parameters and introducing a threshold for random bit

generation, we prove that the chaos-based generator achieves

superior randomness and statistical properties.

Keywords: pseudo-random number generators, CTR_DRBG,

chaos-based generator, security, chaotic map

I. INTRODUCTION

A wide range of domain applications are based on
sequences of random numbers, for example, simulations (in
fields like physics [1], [2] or engineering [3]), statistics [4]-
[6], machine learning [7], gaming [8], and especially
cryptography [9]. Random numbers can be achieved in two
ways [6]: (1) using a true random number generator (TRNG)
or (2) using a pseudorandom number generator (PRNG).
PRNGs play an important role in various cryptographic
applications, providing a fundamental building block for
generating keys, creating digital signatures, and ensuring
secure communications [10]. The reliability and
unpredictability of these generators are essential for
maintaining the security of sensitive data and systems in
modern digital environments, even more so in today's
technological context, where large volumes of data are
generated from different sources. According to [11] there are
several types of PRNGs: linear congruential generators
(LCG), linear feedback shift registers (LFSR), and PRNGs
that exploit the intricate chaotic behavior in dynamic systems
that includes principles from chaos-based cryptography.
Chaos-based cryptography is a branch of cryptography that
includes the principles of chaotic systems to secure
communications [12]. Chaotic systems are highly sensitive to
initial conditions, proving deterministic yet unpredictable
behavior, and are non-linear dynamical systems. These
characteristics make chaos a good foundation for developing
cryptographic algorithms. Chaos-based cryptography has
applications in different fields [12]: secure communications,
pseudorandom number generation, image and video
encryption, hash functions, secure key exchange, etc.

In this paper we implemented the CTR_DRBG following
NIST’s guidelines [13] and a PRNG based on the logistic map,
one of the most used technique in chaos-based cryptography.
The second approach is inspired from study [14] that involves
an enhanced logistic map. Compared to [14], we refined
parameters and changed the way in which the digits are
generated. We prove that both implementations pass the NIST
test suite for random and pseudorandom number generators
[15], but the chaos-based PRNG demonstrates superior
performance in terms of execution time. The rest of the paper
is organized as follows: Section II presents the methods and
tools used in this study, Section III presents the details of
implementation for the two approaches, Section IV discuss the
results, and Section V presents the conclusions of the study
and further research.

II. METHODS AND TOOLS

A. Counter mode Deterministic Random Bit Generator

The first tool implemented in this research is based on the
CTR_DRBG, which is a specific type of Cryptographically
Secure PRNG (CSPRNG) defined in NIST SP 800-90A, Rev.
1 [13]. A CTR_DRBG needs an entropy input, has an internal
state that stores the parameters, variables and additional
values, and consists of the following five functions: [13]

• Instantiate Function: Initializes the CTR_DRBG with an
entropy-based seed, possibly enriched with a nonce and a
personalization string, to establish its initial internal state.

• Generate Function: Produces pseudorandom bits using the
current state, then updates the state in preparation for
future requests.

• Reseed Function: Refreshes the generator by integrating
new entropy with the existing state and any additional
input, resulting in a rejuvenated internal state.

• Uninstantiate Function: Securely deletes the internal state
to prevent any subsequent recovery or misuse of the state.

• Health Test Function: Verifies the operational integrity of
the DRBG to ensure it continues to function as expected.

B. Chaos Pseudo-Random Bit Generator (Chaos PRBG)

The second tool implemented in this research explores
chaos-based pseudo-random number generation techniques.
In chaos-based cryptography, one of the most important map
is the logistic map, which has the following definition [16]:

F��x���, r
 = F��r ∙ x� ∙ �1 − x�
�, �1

where the parameter r ∈ �0,4
, the initial value x� ∈ �0,1
,
x� ∈ �0,1
, and n ∈ {1,2, … , N}, N being the number of

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

143

iterations. In our implementation, we used an enhanced
logistic map proposed in [14]:

x��� = ���

�� �!",#
 �2

where FL is the logistic map defined in Eq. (1). The author
introduces an enhanced version of the logistic map in equation
(2) to achieve increased chaotic complexity and a broader
chaotic range. This enhancement involves incorporating the
chaotic sequences generated by the logistic map into a generic
equation with heightened sensitivity, facilitated by the
utilization of a multiplicative inverse function. By leveraging
this approach, the proposed chaotification model exhibits
generality and maintains a range within x∈[0,1]. Notably, the
design choice to employ a fractional function yields improved
statistical properties, enhancing the overall efficacy of the
method. We chose 210 because the system requires a
reasonable computation time, unlike higher powers, which
would necessitate more time.

III. THE PROPOSED METHOD

A. Counter Mode Deterministic Random Bit Generator

Configuration

For the CTR_DRBG implementation, Advanced
Encryption Standard (AES)-256 [17] was employed with the
following parameters for instantiation, reseeding, and
generation functions:

• Highest Supported Security Strength: 256 bits, ensuring a
minimum entropy level [19]

• Block Length of AES: 128 bits

• Key Length: 256 bits (Increases the complexity of the
algorithm. Currently, there is no known efficient method
to break AES-256 through brute force or other
cryptographic means)

• Entropy Input Length: Ranging from 256 to 1000 bits [13]

• Maximum additional input length: 800 bits [13]

• Seed Length: 384 bits (seed length=output length + key
lenght)

• Maximum number of bits per request: 4000 bits [13]

• Reseed Interval: 100000 requests [13]

The seed material for the CTR_DRBG was obtained using
an entropy pool provided by the Windows operating system.
An Application Programming Interface (API) Error!
Reference source not found. facilitated the collection of
entropy from diverse system data sources, including mouse or
keyboard timing input, various system data and user data, such
as the process ID, thread ID, system clock, system time,
system counter, memory status, free disk clusters, and hashed
user environment block.

Seed Derivation and Generation Function. The initial step
involved instantiating the CTR_DRBG to obtain the seed
material, which was further processed through a derivation
function to derive the seed. Subsequently, a secure generation
function was developed to produce pseudo-random bits based
on the derived seed.

Periodic Reseeding for Enhanced Security. Periodic
reseeding was implemented to address potential threats to the
security of the DRBG seed, entropy input, or working state

over time. By periodically refreshing the seed material, the
security risks were mitigated, reducing the likelihood of
compromising the data protected by cryptographic
mechanisms employing the DRBG.

Prediction and Backtracking Resistance. The
CTR_DRBG implementation prioritized prediction resistance
and backtracking resistance, ensuring robust protection
against potential attacks attempting to predict future random
outputs or backtrack previously generated random values.

1) Randomness Testing Applied on CTR_DRBG
To assess the statistical randomness of the generated

output, we utilized the NIST SP 800–22 test suite [15]. Each
sub-test within the NIST suite was applied to evaluate the
randomness properties. The significance level was set to
α = 0.01, and a test sample was considered to have passed each
sub-test if the P-value exceeded α. A total of 20 test samples,
each with a length of 100000 bits, were used for testing. The
results are summarized in Table I. The minimum pass rate for
each statistical test with the exception of the random excursion
(variant) test is approximately = 18 for a sample size = 20
binary sequences. The minimum pass rate for the random
excursion (variant) test is approximately = 2 for a sample size
= 3 binary sequences.

B. Chaos PRBG Configuration

For the implementation of this algorithm, we started
with an enhanced logistic map from Eq. (2), utilizing
Lyapunov Exponent and Fuzzy Entropy as metrics for
assessing sensitivity and complexity, respectively. The
Lyapunov Exponent provides insights into the system's
sensitivity to initial conditions, a fundamental aspect of
chaotic behavior. By quantifying how nearby trajectories
diverge over time, it helps gauge the unpredictability and
chaotic nature of the system. In chaotic systems, even tiny
differences in initial conditions can lead to vastly different
outcomes over time. The exponent is positive so it indicates
chaotic behavior, meaning the system is highly sensitive to
initial conditions and unpredictable in the long term. On the
other hand, Fuzzy Entropy offers a measure of complexity,
capturing the irregularity and intricate patterns within the
chaotic sequences.

1) Chaos-based PRBG Pseudo-Code:

For the Chaos-based PRBG we started with the algorithm
proposed in [14] for which we adjusted the parameters to
optimize the performance of the chaotic variable processing
and changed the way in which the digits are obtained.
Input: secret key key, temporar key length temp_key_len,
parameter r, initial value of x x(0), threshold value p
Output: pseudo-random bits result
1. temp_key_len=52;
2. key_len=256;
3. counter= key_len -temp_key_len+1;
4. r=3.99999
5. x(0)=0.66;
6. p=5;
7. for i=0 to counter do:
8. key1=key.Substring(i, len_temp_key)
9. for j=0 to len_temp_key do:
10. if key1(j)==’1’ then
11. temp_key(i)=temp_key(i)+1/2j;
12. for i=1 to counter do:
13. x(i)=(x(i)+temp_key(i-1)) mod 0.99999;

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

144

14. x(i)=210/2r*x(i)*(1-x(i)) mod 1;
15. digits=x(i).digits;
16. for each digit in digits do
17. if digit < p then
18. result=result+’0’;
19. else
20. result=result+’1’;

The algorithm outlines the procedural steps involved in
generating pseudo-random bits, crucial for various
applications such as cryptography and simulation. It relies on
the integration of a secret key to perturb the chaotic variables,
enhancing randomness and security. The chaotic variables
produced from the secret key exhibit a high level of
sensitivity to even minor alterations in the key, which can be
attributed to the chaotic perturbation operations applied
during the process. The entropy source of this algorithm is
represented by this key, considered as seed material, which
must be kept secret. The key generation process incorporates
an Analog Ambient Light Sensor V2.1 strategically
positioned in densely populated areas to capture dynamic
environmental changes. The sensor data undergoes
transformation via an Analog Digital Converter, yielding a
two-byte digital representation. It has been observed that the
last byte of the resulting value oscillate frequently, so the
binary form of this byte is extracted for later use in the key
bit component. Subsequently, the key undergoes
segmentation into 52-bit blocks to maximize bit generation
potential. This choice aligns with the representation of the
fractional part of a double, which consists of 52 bits. The
initial value of the parameter r is selected to leverage the high
positive value of the Lyapunov exponent, ensuring precision
in chaotic behavior. As per previous studies [14], the
enhanced logistic map demonstrates chaotic behavior within
the range of r values spanning 3.67 to 4. Each digit of the
decimal part of each value of the obtained chaotic variable is
compared with a threshold value, resulting in a bit. Using a
256-bit key, a variable number of pseudo-random bits can be
generated, ranging between 3075 bits and 3485 bits,
intensifying security due to its length. Evaluation of the
execution times of both algorithms for pseudo-random
number generation proves the superiority of the second
algorithm.

To investigate the behavior of the Lyapunov exponent as
a function of the system's control parameter, r, we employed
a numerical method to generate the plot. First, we defined a
set of values for r between 0 and 4, generating 4 million
points to cover this interval and set initial value x=0.66. This
fine resolution of r values allows us to observe the detailed
behavior of the Lyapunov exponent and to identify the point
at which it reaches its maximum. Fig. 1 demonstrates that for
r=3.99 the Lyapunov Exponent has a value of approximately
7.03. We chose r=3.99999 for improved precision and in

accordance with [14]. We utilized the modulus 0.99999 in the
calculation of x(i) to ensure that remains in the appropriate
phase space , as well as to align with the approach outlined in
[14]. The initial value of x=0.66 was chosen randomly.

2) Randomness testing applied on Chaos_PRBG

We conducted the suite of 15 tests from NIST [15],
configuring the same parameters as those used in testing the
CTR_DRBG algorithm. The results are documented in
Table I.

IV. DISCUSSIONS

A. Results

In this section, we compare the results that we obtained by
implementing CTR_DRBG and the integration of chaos-
based random number generation. The test results are captured
in Table I. Both implementations pass all NIST tests,
indicating that the outputs of the deterministic random bit
generators demonstrate adequate randomness, uniform
distribution, and complexity.

TABLE I. NIST SP 800-22 RESULTS

Statictical Test

Proportion

CTR_DRBG

Proportion

Chaos PRBG

Frequency 19/20 19/20

Block frequency 20/20 20/20

Cumulative Sums* 20/20 19/20

Runs 20/20 19/20

Longest run 20/20 19/20

Binary matrix rank 20/20 20/20

FFT 20/20 20/20

Non-overlapping template.* 19-20/20 19-20/20

Overlapping template.* 19/20 20/20

Universal 20/20 20/20

Approximate entropy 20/20 20/20

Random excursions.* 3/3 1/1

Random excursions variant.* 3/3 1/1

Serial* 20/20 19-20/20

Linear Complexity 18/20 20/20

Success Counts 15/15 15/15

The simplified code required for chaos-based generation
facilitates ease of implementation and reduces computational
overhead compared to the NIST DRBG schema. The
introduction of a threshold for random bit generation ensures
controlled randomness, enhancing the security and
predictability of the generated bits. We tried to utilize the
values of x without this threshold, but the test results were
unsatisfactory. Only the Rank, Linear Complexity, and a few
Non-overlapping tests passed. I employed both the complete
value and the final 2 and 3 digits of the binary representation
acquired from the Analog-to-Digital Converter as the 256-bit
key. However, the last byte proved to be a better source of
entropy. When selecting a smaller precision for r, such as
r=3.99, the Cumulative Sums, Frequency and Runs tests
failed.

Figure 1 Lyapunov Exponent

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

145

B. Comparison with Related Work

Our research draws inspiration from study [14] that
constructed a chaos-based block cipher. While the original
focus was on image encryption, we adapt the concept of
chaotic variable generation, modifying parameters and
precision to achieve superior chaotic behavior in generating
pseudo-random numbers. By incorporating insights from
chaos theory and optimizing parameter selection, we prove the
quality and unpredictability of the generated random values.
Our approach yields better results compared with related work
[14] in certain randomness tests from the NIST test suite, as
evidenced by improved p-values shown in Table III,
indicating enhanced randomness and statistical properties.

TABLE II.

Statictical Test

p-value Chaos-

based PRBG

p-value chaos-

based block cipher

Block frequency 0.5341 0.3321

Runs 0.6371 0.2152

Approximate entropy 0.7399 0.1782

Serial* 0.2133 0.1265

The secret keys employed in these algorithms have a
length of 256 bits, which offers enhanced security compared
to CTR_DRBG_128, and the chaos-based implementation
[14], which utilizes 128-bit keys. A 256-bit key provides high
security in cryptography making it highly difficult to break
through brute force or other cryptanalysis methods in a
reasonable amount of time. For instance, the total number of
possible keys with 256 bits is approximately 2256, which is an
extremely large value and exceeds the computing capacity of
current computers to try all these keys in a reasonable time.

V. CONCLUSIONS

In this research, we have explored and developed
cryptographic algorithms aimed at enhancing the security and
efficiency of pseudo-random number generation. By focusing
on two distinct methodologies, namely the Counter Mode
Deterministic Random Bit Generator and a chaos-based
pseudo-random number generator, we aimed to contribute to
the advancement of cryptographic techniques.

Looking towards future directions, our emphasis will be
on the exploration of various parameters within the chaos-
based pseudo-random number generation algorithm. This
exploration aims to achieve favorable results on the suite of
NIST tests for bit streams of larger lengths. Exploring
performance metrics beyond just execution time, such as
scalability and memory usage, could enrich future research
comparisons. Additionally, we intend to implement
enhancements to the current implementation, striving for
improved performance and resilience. Furthermore,
expanding the comparison to include more varieties of PRNGs
such as Mersenne Twister, Permuted Congruential Generator
or another algorithm proposed by NIST could offer a more
comprehensive overview of the landscape.

REFERENCES

[1] A. Acín and L. Masanes, ‘Certified randomness in quantum physics’,
Nature, vol. 540, no. 7632, pp. 213–219, 2016.

[2] M. N. Bera, A. Acín, M. Kuś, M. W. Mitchell, and M. Lewenstein,
‘Randomness in quantum mechanics: philosophy, physics and
technology’, Reports on Progress in Physics, vol. 80, no. 12, p.
124001, 2017.

[3] L. Serhii, O. Oleksandra, S. Nataliya, and Z. Andrii, ‘Modeling and
signals processing using cyclic random functions’, in 2018 IEEE 13th
International Scientific and Technical Conference on Computer
Sciences and Information Technologies (CSIT), IEEE, 2018, pp. 360–
363.[Online].Available:https://ieeexplore.ieee.org/abstract/document/
8526653/

[4] R. M. Bethea and R. R. Rhinehart, Applied engineering statistics.
Routledge, 2019.

[5] G. Grimmett and D. Stirzaker, Probability and random processes.
Oxford university press, 2020.

[6] S. M. Ross, Simulation. Academic Press, 2022.

[7] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary,
E. P. Hamilton, and D. Roth, ‘A comparative study of fairness-
enhancing interventions in machine learning’, in Proceedings of the
Conference on Fairness, Accountability, and Transparency, Atlanta
GA USA: ACM, Jan. 2019, pp. 329–338. doi:
10.1145/3287560.3287589.

[8] C. Zhou, ‘Analysis of Logistic Map for Pseudorandom Number
Generation in Game Development’. arXiv, Feb. 29, 2024. [Online].
Available: http://arxiv.org/abs/2403.00864

[9] O. Petura, ‘True random number generators for cryptography: Design,
securing and evaluation’, PhD Thesis, Lyon, 2019. [Online]. Available:
https://www.theses.fr/2019LYSES053

[10] A. Röck, Pseudorandom number generators for cryptographic
applications. 2005. [Online]. Available: http://www-
rocq.inria.fr/secret/Andrea.Roeck/pdfs/dipl.pdf

[11] K. Bhattacharjee and S. Das, ‘A search for good pseudo-random
number generators: Survey and empirical studies’, Computer Science
Review, vol. 45, p. 100471, 2022.

[12] L. Kocarev and S. Lian, Chaos-based cryptography: Theory,
algorithms and applications, vol. 354. Springer Science & Business
Media, 2011.

[13] E. B. Barker and J. M. Kelsey, Recommendation for random number
generation using deterministic random bit generators (revised). US
Department of Commerce, Technology Administration, National
Institute of Standards and Technology, Computer Security Division,
Information Technology Laboratory. 2007. [Online]. Available:
http://www.gocs.eu/pages/fachberichte/archiv/088-Draft_SP800-90A-
Rev1_May-2011.pdf

[14] M. Alawida, J. S. Teh, A. Mehmood, A. Shoufan, and W. H. Alshoura,
“A chaos-based block cipher based on an enhanced logistic map and
simultaneous confusion-diffusion operations,” Journal of King Saud
University - Computer and Information Sciences, vol. 34, no. 10, Part
A, pp. 8136–8151, Nov. 2022, doi: 10.1016/j.jksuci.2022.07.025.

[15] A. Rukhin et al., A statistical test suite for random and pseudorandom
number generators for cryptographic applications, vol. 22. US
Department of Commerce, Technology Administration, National
Institute of Standards and Technology, Computer Security Division,
Information Technology Laboratory. 2001.

[16] T. Tsuchiya and D. Yamagishi, “The Complete Bifurcation Diagram
for the Logistic Map,” Zeitschrift für Naturforschung A, vol. 52, Jun.
2014, doi: 10.1515/zna-1997-6-708

[17] D. Selent, ‘Advanced encryption standard’, Rivier Academic Journal,
vol. 6, no. 2, pp. 1–14, 2010.

[18] ‘CryptGenRandom function (wincrypt.h) - Win32 apps’.[Online].
Available:https://learn.microsoft.com/enus/windows/win32/api/wincr
ypt/nf-wincrypt-cryptgenrandom

[19] E. Barker, “Recommendation for Key Management: Part 1 – General,”
National Institute of Standards and Technology, NIST Special
Publication (SP) 800-57 Part 1 Rev. 5, May 2020. doi:
10.6028/NIST.SP.800-57pt1r5.

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

146

