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Abstract—Railway turnouts are crucial components of 

railroad transportation, responsible for changing the direction 

of trains. Turnouts can aid in train positioning systems based on 

railway geographical information by accurately recognizing and 

classifying turnouts and predict the path of the train in advance, 

thereby enhancing the safety and efficiency of railway transit. 

However, the present turnout recognition algorithms perform 

poorly in real-world applications since there are few turnout-

related datasets and the features between different classes are 

highly similar. This work systematically explores the problems 

that turnout recognition may face and corresponding 

improvement solutions. We customized a dataset and based on 

this, we conduct extensive experiments to explore the impact of 

factors such as data augmentation, image resolution, and 

training size on turnout recognition performance. The best 

solution can achieve 89.03% Top-1 accuracy and 93 FPS speed, 

enabling high accuracy while achieving real-time performance. 

Our work provides great promise for improving the 

performance of train environment perception and positioning 

systems and has the potential to be widely used in real-world rail 

transit.   

Keywords—railway, turnout recognition, computer-aided 

positioning, image classification, computer vision 

I. INTRODUCTION 

In contemporary society, railway transportation is widely 
used around the world as an efficient and reliable public 
transportation. The timely and precise acquisition of train 
location information is crucial to ensuring the safety and 
efficient operation of trains. Currently, one of the most 
mainstream train positioning technologies worldwide is 
positioning based on the Global Positioning System (GPS) 
[1]. The GPS receiver carried on trains can calculate the train’s 
position by receiving satellite signals. The positioning 
accuracy of GPS typically ranges between 5 to 15 meters. In 
comparison to other modes of transportation, such as cars or 
airplanes, trains usually travel on relatively fixed paths. Trains 
travel on tracks, which are planned, laid and fixed in advance, 
thereby constraining the driving path of the train within the 
rail network. This characteristic renders the movement of 
trains relatively predictable. Therefore, more accurate train 
position information can be obtained by fusing the train 
position obtained by GPS with the track geographical 
information [2]. In other words, the coordinates obtained from 
the GPS can be mapped onto the track of the geographical 
map, thereby enabling the refinement of the train position. 
This method provides high accuracy in most cases but fails in 
turnout areas. There are often multiple paths near the turnout 
and current GPS often struggle to precisely determine the 
exact track on which a train is located in turnout regions. 

In railway networks, turnouts, as crucial devices determine 
the direction of train travel, need to be accurately detected and 
classified to ensure the precision of train positioning. Through 
precise recognition of turnouts, we can know which path the 
train will follow, thereby providing crucial auxiliary 
information for GPS-based train positioning. Track circuits 
and vibration sensors are two commonly used for turnout 
recognition. When a train passes the turnout, the current in the 
track circuit changes. Likewise, vibration sensors mounted on 
tracks or turnouts can detect vibrations caused by a passing 
train. By monitoring these changes, we can determine the 
turnout direction. Some researchers have made several 
attempts. [3] detected the train type by accelerometer sensors 
placed around the turnouts and crossings. However, these 
methods are not suitable for non-electrical turnouts and can 
only detect signals when the train passes, lacking the ability 
for advance prediction. Additionally, the maintenance costs 
for these sensor facilities are high. With the rapid development 
of deep learning (DL) and computer vision technology, 
scholars have widely customized vision-based algorithms for 
the railway industry. For instance, [4] utilized semantics 
segmentation to detect trespassing incidents along the right-
of-way, [5] monitored grade-crossing violations via object 
detection and object tracking, and [6] predicted track 
geometry degradation using DL-based time-series analysis. 
However, the safety-centric nature of traditional railway 
industry data is relatively closed, leading to a limited amount 
of research on turnout detection or classification. 

The work [7] defined the maximum lateral deviation 
between the center of the current track and the center of the 
train. It first extracts the track through the edge detector and 
sets the track tracker, and then determines the turnout 
direction by the position of the current track center point. 
Similar work [8] was also carried out by detecting rail turnout 
through image processing on railway line. They use canny 
edge extraction and Hough transform to get the track line. The 
turnout crossing zone is determined by the intersection of the 
two track lines. Nevertheless, this method requires hand-
crafted hyper-parameters and is limited to processing scenes 
with relatively simple backgrounds and exhibits poor 
robustness when confronted with complex environments. [9] 
constructed a semantic railway scene understanding dataset 
collected from on-board cameras from different countries. The 
image classification and detection tasks it builds include the 
switch category. They use densenet161 [10] pre-trained on 
ImageNet for fine-tuning to obtain better classification 
performance. The possibility of transfer learning in improving 
the accuracy of small dataset-based turnout detection was 
verified in the work of [11]. Reference [12] explored the effect 
of bounding box size on turnout detection performance by 
introducing three hyper-parameters over the boxes. 

The first and third authors were funded by Guangzhou Municipal 
Science and Technology Project under Grant 2023A03J0011, excluding 
second author. 
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Fig. 1. The components of turnout. Fig. 2. Data acquisition. 

The core concept behind vision-based turnout recognition is 
to find the feature relationships of different components 
within the turnout area (e.g., guide rails, switch blades, 
diamond crossovers, etc.) to determine their driving direction. 
Fig. 1 illustrates the components of the turnout. However, due 
to the minimal differences among different types of turnouts 
and the relative scarcity of turnout-related data, existing 
turnout detection algorithms exhibit poor performance in 
terms of accuracy and robustness. It may be possible to 
improve its accuracy by acquiring high-resolution images and 
using strategies such as data augmentation. However, to the 
best of our knowledge, there is currently no literature that has 
studied these in depth in the field of railway turnout 
recognition. Against this backdrop, this paper extensively 
explores the critical issues in turnout recognition and conducts 
in-depth analyses of a series of possible optimization 
solutions. Our goal is to provide new perspectives and 
innovative solutions for the development of GPS-based train 
positioning systems. The main contributions of this paper are 
as follows: 

1) We conduct a comprehensive analysis of the 
challenges encountered in vision-based turnout recognition 
tasks and proposed a series of possible solutions.  

2) We explore the effect of pre-processing of turnout 
recognition in terms of data augmentation, the choice of 
resolutions and scaling strategy on training, providing some 
empirical prior knowledge for the turnout recognition task. 

3) We further explore how to deploy turnout 
recognition approaches on CPU platforms and how turnout 
recognition can assist train GPS positioning. 

II. CASE STUDY 

A. Algorithm Customization 

In recent years, the booming of deep learning has 
propelled the advancement of intelligence in different 
industries. Nevertheless, despite the significant success of 
these advanced algorithms in many industries, their 
application is somewhat restricted in safety-centric closed rail 
transit industries. Deep learning methods usually rely on 
extensive high-quality datasets for training. Unfortunately, the 
rail transit sector faces challenges in development of smart 
algorithms due to the limited availability of public datasets. In 
this paper, we focus on vision-based turnout recognition in the 
field of rail transit. We construct a customized turnout dataset 
and use it as the foundation for our study and discussions. The 
challenges that vision-based turnout recognition algorithms 

confront will then be discussed in detail, along with a few 
possible solutions. 

Data Acquisition. The turnout data is captured by onboard 

forward cameras on the train. We have knowledge of the 

geographic location information of the turnouts. When the 

position of the train obtained by GPS is near the turnout, the 

image sequence at this time is collected. See Fig. 2. To ensure 

data diversity and explore the impact of image resolution on 

the images, we conducted data collection on two lines using 

cameras with resolutions of 640×360 and 1920×1024 

respectively.  

Challenge 1: Insufficient Training Data. Turnouts in the 

field of rail transit are considered special structures. Compared 

to straight tracks, the number of turnouts is relatively small, 

and the data collection process is more complex. In addition, 

the difference between adjacent frames in the video is small 

and can be ignored. Generally, one frame is selected at a fixed 

interval, thereby reducing the data redundancy but also 

shrinking the overall samples. These factors jointly lead to 

insufficient training data, limiting the performance of data-

driven turnout recognition algorithms.  

Challenge 2: Low Data Quality. The quality of turnout 

images collected by cameras may be affected by many factors. 

Firstly, the camera is sensitive to lighting changes, and the 

image quality is poor in strong light or dark light conditions. 

Secondly, cameras may be subject to interference from train 

vibrations and high-speed motion, leading to motion blur and 

distortion. Additionally, adverse weather conditions such as 

rain, snow, and strong winds can also affect image clarity. 

These factors collectively result in issues such as noise, 

blurring, and distortion in the turnout images captured by the 

camera, posing challenges to the accuracy and stability of 

turnout recognition algorithms.  

Challenge 3: Low Inter-class Variance. The position of 

the switch rail in turnout plays a decisive role in the direction 

of track traversal. From a geometric perspective, trains 

typically travel in the direction where the gap between the 

switch rail and the stock rail is larger. There is a high similarity 

in geometric features between left and right switch. In the case 

of double locomotives, the train usually does not need to turn 

around when returning, but directly uses the locomotive on the 

other side to travel. However, in images captured in reverse 

travel, the position of the switch rail, which originally 

determines the direction, changes. This can lead to confusion 
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Fig. 3. Visualization of partial turnout images. 

between the left and right switch when compared to images 

captured in forward travel, significantly increasing the 

difficulty of turnout identification. We displayed the turnout         

images with high similarity, as shown in Fig. 3. In order to 

observe the similarity of different turnout classes more 

intuitively, we use t-distributed Stochastic Neighbor 

Embedding (t-SNE) [13] to reduce the dimensionality of the 

original training image data to a 2-dimensional space, and 

reflect the similarity relationships through the relative 

positions of different turnout classes. Fig. 4 shows the tSNE 

distribution of the training data. As you can see, there are no 

clear boundaries between different classes.  

Challenge 4: Data Imbalance [14]. Critical turnout 

components, such as switch tongues and switch points, often 

occupy relatively small areas in the image, with the majority 

of the image containing background information such as 

tracks and rails. This imbalance may lead the model to overly 

focus on the background, resulting in suboptimal performance 

in recognizing key turnout components. Additionally, certain 

turnout categories may appear less frequently in real-world 

scenarios, exacerbating the problem of imbalanced class 

occurrences. The above are some challenges of vision-based 

turnout recognition algorithms. We also have some strategies 

to deal with these issues, which are listed below.  

S1: Data Augmentation [15]. Utilizing data augmentation 

techniques such as geometric or pixel transformations to 

expand the dataset can enhance the model’s ability to 

generalize across different scenarios. However, the 

effectiveness of specific augmentation strategies remains to be 

further investigated.  

S2: Transfer Learning [16]. Leveraging models pre-

trained on large-scale datasets and fine-tuning them for 

turnout recognition tasks can accelerate model convergence 

and enhance performance.  

S3: Oversampling and Under-sampling. Oversampling 

examples in the minority class and under-sampling examples 

in the majority class can be adopted to alleviate data 

imbalance in training to ensure that the model can better learn 

features from all classes.  

S4: Class Weights. By assigning different weights to 

different classes, the model can focus more on classes with  

 

Fig. 4. t-SNE visualization of training data. 

few samples, thereby improving the ability to recognize 

classes with few samples.   

S5: Ensemble Learning. The robustness of the system can 

be enhanced by integrating multiple models with different 

structures and combining their predictions through voting or 

weighting. However, it’s worth noting that this strategy may 

not be suitable for scenarios with real-time requirements.  
S6: Optimizing Architecture. By adjusting the neural 

network structure and loss function, the model can be 
designed to better meet the specific requirements of the 
turnout recognition task.  

The performance of vision-based turnout recognition 
algorithms may be improved by utilizing these tactics 
individually or in combination. Researchers have already 
investigated a few tactics, like transfer learning. In this work, 
we focus on the exploration of preprocessing, including data 
augmentation, the selection of training size, etc. 

B. Model Application 

In this study, the ultimate goal of turnout recognition is 
aimed at assisting train GPS positioning. Thus, we further 
elucidate how turnout recognition approach supports train 
localization, as detailed in Algorithm 1. Initially, the current 
segment is a polyline between the start point and the first 
turnout. During the positioning process, it projects the current
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Fig. 5. Workflow of turnout recognition system. 

GPS location to the current segment. When it comes to 
turnout, it relies on the pose prediction to update the current 
segment. Fig. 6 illustrates the railway track geographical 
database and shows the position revision. In this case, by 
combining the results of turnout recognition, we can enhance 
the positioning accuracy to the track where the train is located. 

Algorithm 1: Turnout Classification-aided GPS 
Positioning of Train  

Input:  The video frame at time � − �� , GPS location at 

time � − ���, railway track geographical database D. 

Output: The train's location at time � − ��.  

1： � ← {
�, 

, … , 
��} the polyline between the first 
point and the first turnout 

2： initiate the current segment 

3： for � = 1, 2, … do 

4：     if �������� , ����������� < " then 

5：         #� ← �������_����%����(��)  
6：         � ← {
�, 

, … , 
��} // the current segment 

slides to the next segment based on #� and D.  
// project the GPS location to the current segment 

7：     min _���� ← ∞, �� ← ��--  
8：     for � = 1, 2, … , �� − 1 do  

9：         ����, 
� = 
��.�%�_
����_��_-���(��� , -(
/ , 
/0�)) 

10：     If ���� < 1��2��� then 

11：         �� ← 
�, 1��2��� ← ���� 

12：     yield  �� 

III. EXPERIMENTS AND DISCUSSION 

Experiments were carried out using a customized dataset 
in order to validate some of the tactics that were presented in 
the preceding subsection that can improve the performance of 
vision-based turnout recognition. In this section, we primarily 
focus on the impact of data preprocessing on the turnout 
classification algorithm, including four aspects: 1) comparing 
the performance of common deep learning-based 
classification algorithms on turnout classification tasks; 2) 
analyzing the effect of different data augmentation methods 
on it; 3) studying the effects of image resolution, model input 
size, and methods of image scaling; 4) exploring the model 
deployment and how turnout recognition can assist train 
positioning. 

 

Fig. 6. Railway track geographical database, where 
/ is the nodes in the 

track polyline, ��3  is the GPS position, �� is the revised position. The black 
track is the one that will be occupied by the train while the blue track will 
not be occupied. The polyline consists of two types of nodes: turnouts and 
tracks, each annotated with geographical coordinates indicating their 
neighbors. Additionally, the track node maintains a reference to its adjacent 
switch. 

A. Experiment Setup 

Dataset. We use a customized railway turnout dataset 
consisting of 640×360 and 1920×1024 resolution images. 
The dataset images were taken in day-to-night environments, 
including four categories: left, right, straight, and unknown. 
The entire annotation is only image level labels. We use an 
8:2 ratio to divide the training set and the validation set. 

Metrics. We mainly evaluate the performance of turnout 
classification from two aspects: accuracy and speed. We 
measure accuracy using Top-1 accuracy (Top-1 Acc) and 
runtime using frame per second (FPS). Top-1 Acc is 
calculated as the true predicted samples divided by the total 
samples. If the classifier returns the category with the highest 
probability scores equal to the ground truth, the prediction is 
correct, otherwise the prediction is wrong. Parameters and 
FLOPs are used to measure the model complexity. 

Implementation Detail. All model training in this work 
was done on Ubuntu 20.04 with a NVIDIA GeForce GTX 
3060 Ti and CUDA 11.7. Python 3.8 was chosen as the   
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TABLE I.  THE DETAILS OF CUSTOMIZED DATASET 

Image Resolution All Left Right Straight Unknown 

640×360 443 128 104 101 110 

1920×1080 733 110 125 379 119 

total 1176 238 229 480 229 

TABLE II.  THE CONFIGURATION OF TRAINING HYPER-PARAMETERS 

Hyper-Parameters Setting 

Epoch 40 

Batch size 16 

Learning rate 0.0001 

Optimizer Adam 

Adam betas (0.9, 0.999) 

StepLR Step_size=10, gamma=0.1 

Loss function Cross Entropy 

TABLE III.  THE COMPARISON RESULTS OF COMMON CLASSIFICATION 

METHODS ON CUSTOMIZED DATASET 

Model FLOPs Params FPS Top-1 Acc 

VGG16 78.70G 134.3M 41 69.62% 

MobileNetV2 0.45G 0.67M 91 69.20% 

ResNet18 8.54G 11.18M 96 83.54% 

ResNet18-SE 8.54G 11.27M 93 85.65% 

DenseNet121 12.93G 6.87M 72 84.39% 

EfficientNet_B0 1.82G 3.97M 88 81.01% 

EfficientVit_B0 0.49G 2.13M 90 81.86% 

VitTiny_Patch16 4.82G 5.49M 85 81.43% 

RepVGG_A0 7.08G 7.81M 92 85.23% 

 
programming language, and PyTorch 1.13.1 served as the 
deep learning framework. For detailed hyper-parameters 
information during the training phase, see Table II. 

B. Baseline Selection 

The overall workflow of the vision-based turnout 
recognition system is depicted in Fig. 5. Images are initially 
captured using an onboard camera, followed by data cleaning 
and annotation. Secondly, various data augmentation 
strategies are applied to expand the dataset, which is then fed 
into an end-to-end turnout classification model for training. 
Iterative training is performed by adjusting the hyper-
parameters to obtain the optimal model. Afterwards, the 
trained model is deployed to the on-board edge device with 
limited resources, and certain acceleration tools are employed 
for model optimization. In this section, our emphasis is on 
selecting the baseline for vision-based turnout recognition 
tasks. When it comes to turnout recognition tasks, they can be 
implemented through detection or classification. However, in 
this paper, we opt for classification rather than detection. This 
decision is grounded in three reasons. First of all, our objective 
is to assist train positioning by identifying the status of the 
turnouts, without requiring its location in the image. Secondly, 
detection is more challenging to annotate compared to 
classification tasks. Turnout annotation typically requires 
knowledge and expertise in rail transit, and its accuracy is  

 
Fig. 7. Visualization of classification comparison results. 

pivotal for model performance. Moreover, detection tends to 
more complex than classification as it involves not only object 
classification but also bounding box regression. To sum up the 
above points, we decided to use classification task to realize 
turnout recognition. 

At present, there are many classification algorithms that 
have achieved relatively good performance. Here, we 
experiment with some common learning-based classification 
models, including VGG16 [17], ResNet18 [18], ResNet18- 
SE [19], MobileNetV2 [20], DenseNet121 [10], 
EfficientNetB1 [21], EfficientVit-B0 [22], VitTiny-Patch16 
[23], and RepVGG-A0 [24]. We conduct experiments on a 
custom dataset and no data augmentation is adopted. All 
images are uniformly scaled to 640×360 through Resize 
before being fed into the model. We apply the same set of 
hyperparameters shown in Table II. Our preference is to 
employ simpler models to achieve a higher accuracy in turnout 
classification. The experimental results are shown in Table III. 
It can be seen that VGG16 has the slowest inference time, and 
the highest number of parameters yet achieves only 69.62% 
Top-1 Acc. MobileNetV2, having the fewest parameters, also 
exhibits relatively low accuracy at 69.20%. ResNet18-SE, a 
variant of ResNet18 incorporating SENet [19], achieves the 
highest Top-1 accuracy at 85.65%. RepVGG-A0 achieves an 
accuracy of 85.23%, second only to ResNet18-
SE.EfficientNet-B0, EfficientVit-B0, and VitTinyPatch16 
have fewer parameters, leading to a certain degree of accuracy 
decline. However, they still achieve a Top-1 Acc of 
approximately 81%. Based on the experimental results, we 
believe that real-time turnout classification with high accuracy 
can be attained with ResNet18-SE, which will be utilized in 
further experiments. 

C. Effect of Data Augmentation 

By adding variances and disturbances through data 
augmentation, one can expand the data distribution and 
improve the generalization ability and robustness of the 
model. Common data enhancements can be divided into 
geometric transformation, color space transformation, pixel-
level transformation, random erasing, as well as mixing 
methods. However, not all data augmentation can improve the 
accuracy of the model. Model accuracy could be negatively 
impacted by improper data augmentation, which could 
introduce huge noise. What’s more, the computational cost of 
training goes up with massive data augmentation. As a result, 
before applying data augmentation techniques, it is essential 
to thoroughly consider their suitability for the task at hand and 
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the dataset. The applicability of various data augmentation 
methods for railway turnout classification is discussed below. 

1) Promising Data Augmentation 

a) Color Jitter: Color Jitter can randomly change the 
brightness, contrast, saturation, and hue of an image. It can 
improve the robustness of the model as railway scenes may 
face different lighting and weather conditions. 

b) Scaling: The shooting distance will cause the scale 
of the turnout to change, so scaling helps the model handle 
different scales.  

c) Normalize: It maps data to a smaller range, reducing 
the influence of outliers on the model, thus enhancing its 
robustness and convergence speed. 

2) Inappropriate Data Augmentation 

a) Random Crop: The turnout usually appears in the 
center area of the image. Random cropping may crop out 
critical discriminative regions. In Fig. 8, we use a heat map 
to show the location distribution of turnouts on the image. 

b) Horizontal & Vertical Flip: The left switch becomes 
a right switch after horizontal and vertical flipping, see Fig. 
9, both destroying the original feature distribution. Therefore, 
neither horizontal nor vertical is appropriate. 

c) Rotation: As the train travels along the railway 
track, the forward view is parallel to the track (excluding 
curved sections), making it unnecessary to introduce rotation. 

d) Adding Noise: Excluding some specific scenarios 
such as rain, snow, and overgrown vegetation, the 
background of railway areas is generally clear. Introducing 
noise would, in fact, introduce unwanted interference. 

e) Image Mixing: The dataset for railway switches is 
relatively small, and classification is a straightforward task. 
Mixing data may result in overly complex samples, which is 
detrimental to model performance. 

f) Warp: The determination of the turnout direction is 
based on the distance between the switch rail and the stock 
rail. Image distortion may destroy this distance information.  

By the way, it is noteworthy that data pre-processing for 
training and validation differs. During the training phase, 
different approaches of data augmentation are needed to 
generalize the data distribution. In contrast, during the 
inference phase, such augmentation is unnecessary. It is 
sufficient to ensure consistency only in the scaling and 
normalization strategy employed during training. We used 
ResNet18-SE in ablation experiments to validate the findings 
outlined above. Similarly, the models are configured with an 
input size of 640×360. The ablated variables in data 
augmentation included Resize, CenterCrop, 
RandomResizedCrop, Horizontal & vertical Flip (H-Flip, V-
Flip), Color Jitter, and Blur. Observing the experimental 
results in Table IV, the following conclusions can be drawn. 
Firstly, random scaling performs the poorest as crucial 
discriminative regions may be randomly removed. Secondly, 
image normalization can enhance the classification accuracy 
of the model to some extent. Thirdly, as aforementioned, 
color jitter can significantly improve the accuracy, while 
horizontal and vertical flips as well as noise addition (e.g. 
Blur) may degrade model performance. Following the 
processing of resizing, normalization, and color jittering, we 
achieved the optimal model with an accuracy of 89.03%. To 
further validate the classification decisions, we employ the 
explainability-oriented Grad-CAM [24] algorithm to 
compare class activation maps (CAM) generated by the pre-
optimized model (Resize-only) and the optimal model 
(through Resize, normalization, and  Color Jitter) for input 
images, as illustrated in Fig. 11. Results indicate that the 
refined model focuses more on discriminative regions, 
contributing to improve the classification accuracy. 

The images must be converted to the same size before being 
fed into the model for training since we employ single-scale 
training. Resizing images is an important step to take. The 
above  analysis focused on data augmentation methods in 

 

 

Fig. 8. Heat map of turnout locations on the image. 

 

Fig. 9. Data augmentation of turnout discriminative region. The original left 
switch turns to right switch after horizontal and vertical flipping. 

 

Fig. 10. Visualization of the impact of image resolutions on model 
performance. Image resolutions from left to right are 640×360, 
1920×1080, and a mixture of the two. 
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TABLE IV.  ABLATION RESULTS OF DATA AUGMENTATION ON RESNET18-SE 

Resize CenterCrop RandomResizedCrop Normalize H-Flip V-Flip Color Jitter Blur Top-1 Acc 

✓        85.65 

 ✓       84.39 

  ✓      75.95 

  ✓ ✓     83.12 

 ✓  ✓     86.50 

✓   ✓     86.92 

✓   ✓ ✓    84.39 

✓   ✓  ✓   85.23 

✓   ✓   ✓  89.03 

✓   ✓   ✓ ✓ 82.28 

 ✓  ✓ ✓    83.97 

 ✓  ✓  ✓   85.23 

 ✓  ✓   ✓  86.92 

 ✓  ✓   ✓ ✓ 85.65 

TABLE V.  COMPARISON OF MODEL PERFORMANCE FOR DIFFERENT IMAGE RESOLUTION AND SCALING STRATEGIES 

Input 
Size 

Image Resolution Scaling Method 
Top-1 Acc（%） 

Left Straight Right Unknown All 

640×360 

640×360 

Resize 80.77 95.24 76.19 86.36 84.44 

CenterCrop 92.31 95.24 80.95 68.18 84.44 

RandomResizedCrop 69.23 95.24 71.43 59.09 73.33 

1920×1080 

Resize 68.18 100 80 87.5 89.80 

CenterCrop 77.27 100 80 75 89.12 

RandomResizedCrop 68.18 100 64 58.33 82.31 

640×360 
1920×1080 

Resize 83.33 97.94 82.61 65.22 85.65 

CenterCrop 70.83 98.97 80.43 71.74 84.39 

RandomResizedCrop 66.67 95.88 54.35 65.22 75.95 

 
Fig. 11.  Comparison of CAM across four classes. The maps highlight the discriminative regions in images used for image classification. Darker shades of red 
indicate greater contributions to the predicted output. From top to bottom rows respectively: original image, heatmap generated by the pre-optimized model, 
and optimal model. 
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turnout classification without delving into image resizing 
methods. In order to ensure the robustness of the algorithm, 
we use images of different resolutions, which may have an 
impact on the image resizing method. Taking into account the 
model input size and image resolution, we have to carefully 
evaluate the resizing approaches. A thorough analysis of it is 
presented in the following section. 

 

D. Effect of Image Resolution 

Our data in this study come in two resolutions: 640×360 
and 1920×1080. Common ways for image resizing methods 
include Resize, CenterCrop, and RandomResizedCrop. To 
investigate the impact of image resolution, model input size, 
and image scaling methods on switch classification, we 
conducted experiments using ResNet18-SE. We evaluate the 
impact on turnout classification performance when the model 
input size is 640×360, without using any enhancement, at 
640×360, 1920×1080, and a mixture of two. The experimental 
results are shown in Table V and Fig. 10. Based on the 
observations of these data, we can draw the following 
conclusions. 

• The likelihood of turnouts occurring in the image’s 
center is comparatively high, random cropping may 
result in the loss of critical information. As a result, the 
center-cropping approach is better than the random 
cropping approach. 

• Under fixed input scales, high-resolution image 
classification consistently outperforms low-resolution 
and mixed-resolution images. This phenomenon arises 
from the richer texture and contextual information 
present in high-resolution images, making it easier to 
obtain discriminative features. 

• In contrast to high-resolution images, low-resolution 
images exhibit relatively lower sensitivity to resizing 
and cropping operations. Low-resolution images 
inherently possess lower information density, thereby 
minimizing the introduction of distortion through 
resizing. The crop operation may not have much 
impact on the information content of the image as well, 
because the low-resolution image itself is relatively 
small, and most of the key information of the image 
may still be retained after cropping. However, if the 
crop size selected is too small, some important 
information in the image may be cropped out, thus 
affecting the performance of the model. 

• For high-resolution images, the Resize strategy is 
slightly better than the CenterCrop, but this is not 
always certain because the input size of the model will 
also affect the scaling strategy. But no matter what 
scaling method is used, increasing the training size will 
generally enhance model performance within a certain 
range, but the improvement will gradually decrease 
and stop increasing or even decline after a certain scale 
threshold. This phenomenon stems from the limited 
model ability of feature learning. After exceeding a 
certain size, the model may not be able to effectively 
utilize additional information, and may even regard it 
as noise, affecting generalization ability. 

E. Model Deployment 

Deployment is the process to provide service for users 
utilizing the trained AI models. There are two options for 
model deployment depending on where the server that hosts 
the AI model is located. Cloud computing refers to 
transferring video frames and others over the internet to a 
remote provider, conducting the analytics and storing the 
results there. Edge computing refers to the decentralized 
analytics at or near the source of data generation, such as IoT 
devices, sensors, or edge servers.  

In the realm of deep-learning-based models, GPU holds 
significant importance for both model training and inference 
processes. Nonetheless, within the railroad industry, the 
utilization of GPU-powered edge computers remains limited, 
despite their potential benefits. To enhance scalability, it is 
important to explore alternative deployment options that rely 
solely on CPUs. Leveraging frameworks like OpenVINO, AI 
inferencing can be optimized for CPU-based systems. These 
frameworks facilitate the acceleration of AI inferencing by 
optimizing neural network models and deploying them on a 
wide range of hardware architectures, including CPUs. By 
harnessing the capabilities of OpenVINO, the deployment of 
AI solutions for switch recognition on edge computers 
equipped with CPUs alone becomes a viable and scalable 
approach, offering potential benefits for the railroad industry.  

We developed a hybrid edge and cloud computing system 
to optimize efficiency, which was tested on a testbed with an 
“edge computer” that was a cluster of 8 micro-computers with 
solely CPUs. On the one hand, turnout classification 
inferencing is placed in the edge computer since the low 
latency is needed for real-time analysis and the on-board 
network connectivity is unreliable or limited. In leveraging the 
edge computer cluster, we first enhance the turnout 
recognition model using OpenVINO for accelerated 
processing. and then model was deployed across all eight 
micro-computers with a load balancer for efficient distribution 
of tasks. On the other hand, it transfers certain metadata to the 
cloud for offline analysis and presentation on a dashboard. 

IV. CONCLUSIONS 

In this paper, we investigated vision-based turnout 
recognition algorithms, using a custom dataset to analyze 
some challenges and solutions associated with vision-based 
turnout recognition task. Extensive experiments were 
conducted to analyze the impact of data augmentation, image 
resolution, training size on the model performance. Our work 
provides some strong support in terms of empirical prior 
knowledge for intelligent turnout recognition in rail transit. 
However, we believe that customized vision-based turnout 
recognition tasks have not been extensively studied. For 
example, long-distance, multi-modal turnout recognition still 
has great potential to improve the accuracy and robustness of 
the framework. These are the areas we intend to focus on in 
future research efforts. 

REFERENCES 

[1] D. Lu and E. Schnieder, “Performance evaluation of gnss for train 
localization,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 
1054–1059, 2014.  

[2] J. Liu, B.-g. Cai, and J. Wang, “A gnss/trackmap cooperative train 
positioning method for satellite-based train control,” in Proc. IEEE Int. 
Conf. Intell. Transp. Syst., 2014, pp. 2718–2724.  

[3] R. Krc, J. Podrouzek, M. Kratochvılova, I. Vukusic, and O. Plasek, 
“Neural network-based train identification in railway switches and 

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

134



crossings using accelerometer data,” J. Adv. Transp., vol. 2020, pp. 1–
10, 2020.  

[4] H. Qin, A. Zaman, and X. Liu, “Artificial intelligence-aided intelligent 
obstacle and trespasser detection based on locomotive-mounted 
forward-facing camera data,” Proc. Inst. Mech. Eng. Part F-J. Rail 
Rapid Transit., vol.237, no. 9, pp. 1230–1241, 2023. 

[5] A. Zaman, Z. Huang, W. Li, H. Qin, D. Kang, and X. Liu, “Artificial 
intelligence-aided grade crossing safety violation detection 
methodology and a case study in new jersey,” Transp. Res. Rec., vol. 
2677, no. 10, pp. 688–706, 2023. 

[6] X. Wang, Y. Bai, and X. Liu, “Prediction of railroad track geometry 
change using a hybrid cnn-lstm spatial-temporal model,” Adv. Eng. 
Inform., vol. 58, p. 102235, 2023. 

[7] J. Wohlfeil, “Vision based rail track and switch recognition for self-
localization of trains in a rail network,” in Proc. IEEE Intell. Veh. 
Symp.  IEEE, 2011, pp. 1025–1030.  

[8] M. Karakose, O. Yaman, and E. Akin, “Detection of rail switch 
passages through image processing on railway line and use of 
condition-monitoring approach,” in Int. Conf. Adv. Technol. & 
Sciences, ICAT, vol. 16, 2016, pp. 100–105. 

[9] O. Zendel, M. Murschitz, M. Zeilinger, D. Steininger, S. Abbasi, and 
C. Beleznai, “Railsem19: A dataset for semantic rail scene 
understanding,” in Proc. IEEE Conf. Comput. Vis. Patt. Recogn. 
Workshops, 2019, pp. 0–0.  

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely 
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. 
Patt. Recogn., 2017, pp. 4700–4708.  

[11] K. Jahan, J. Niemeijer, N. Kornfeld, and M. Roth, “Deep neural 
networks for railway switch detection and classification using onboard 
camera images,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), 
2021, pp. 01–07.  

[12] A.-R. Alexandrescu, A. Manole, and L. Diosan, “Railway switch 
classification using deep neural networks.” in VISIGRAPP (4: 
VISAPP), 2023, pp. 769–776.  

[13] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” J. 
Mach. Learn. Res., vol. 9, no. 11, 2008. 

[14] K. Oksuz, B. C. Cam, S. Kalkan, and E. Akbas, “Imbalance problems 
in object detection: A review,” IEEE Trans. Pattern Anal. Mach. 
Intell., vol. 43, no. 10, pp. 3388–3415, 2020.  

[15] C. Shorten and T. M. Khoshgoftaar, “A survey on image data 
augmentation for deep learning,” J. Big Data, vol. 6, no. 1, pp. 1–48, 
2019.  

[16] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. 
He, “A comprehensive survey on transfer learning,” in Proc. IEEE, vol. 
109, no. 1, pp. 43–76, 2020.  

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks 
for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 
2014.  

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image 
recognition,” in Proc. IEEE Conf. Comput. Vis. Patt. Recogn., 2016, 
pp. 770–778.  

[19] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 
Proc. IEEE Conf. Comput. Vis. Patt. Recogn., 2018, pp. 7132–7141.  

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc. 
IEEE Conf. Comput. Vis. Patt. Recogn., 2018, pp. 4510–4520.  

[21] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for 
convolutional neural networks,” in Int. Conf. Mach. Learn. PMLR, 
2019, pp. 6105–6114.  

[22] X. Liu, H. Peng, N. Zheng, Y. Yang, H. Hu, and Y. Yuan, “Efficientvit: 
Memory efficient vision transformer with cascaded group attention,” 
in Proc. IEEE Conf. Comput. Vis. Patt. Recogn., 2023, pp. 14 420– 14 
430.  

[23] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. 
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., 
“An image is worth 16x16 words: Transformers for image recognition 
at scale,” arXiv preprint arXiv:2010.11929, 2020.  

[24] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “Repvgg: 
Making vgg-style convnets great again,” in Proc. IEEE Conf. Comput. 
Vis. Patt. Recogn., 2021, pp. 13733–13742. 

[25] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, 
“Learning deep features for discriminative localization,” in Proc. IEEE 
Conf. Comput. Vis. Patt. Recogn., 2016, pp. 2921–2929. 

 

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

135




