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Abstract— Endometrial carcinoma (EC) is a common uterine 

malignancy that still contributes significantly to cancer-related 

morbidity and mortality. EC identified in an advanced stage has a 

poor treatment response. In the United States, the most frequent 

cancer of the female reproductive organs is endometrial 

carcinoma. The American Cancer Society's estimations for uterine 

cancer in the United States in 2024 are approximately 67,880 new 

cases of uterine cancer will be diagnosed and approximately 

13,250 women will die from uterine cancer. EC is the second most 

common gynecological malignancy in the world and the top in 

continental Europe. The clinically used EC diagnostic techniques 

are expensive, time-consuming, and not available to all patients. 

The fast expansion of computational biology has sparked 

significant research interest from both data scientists and 

oncologists, resulting in the creation of quick and cost-effective 

computer-aided malignancy monitoring systems. Machine 

learning (ML), a subset of artificial intelligence, enables drug 

development, early disease detection, successful therapy, and 

treatment modality selection. The use of ML methods in EC 

diagnosis, treatment, and prediction may be very important. This 

review provides a summary of EC, as well as risk factors and 

diagnostic procedures, before delving into a complete genetic 

investigation of prospective ML modalities for EC prevention, 

screening, detection, and prognosis.  
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I.  INTRODUCTION 

In 2024, the US is expected to have 2,001,140 new cancer 
cases and 611,720 cancer deaths. Cancer mortality has 
continued to fall until 2021, preventing almost 4 million deaths 
since 1991 due to smoking cessation, faster identification of 
certain malignancies, and improved treatment choices in both 
the adjuvant and metastatic settings [1]. Endometrial cancer is 
the fourth most common kind of gynecological cancer in 
Romania, accounting for 7.8%. Endometrial cancer ranks 
fourth among the causes of genital cancer death (5.7%-5.9%) 
[2]. Women with early detection or EC with a lower risk have 
a better prognosis. Individuals with higher stage EC who have 
developed recurrence have a worse 5-year survival rate, ranging 
from 47% to 58% for stage III EC patients and 15% to 17% for 
stage IV EC patients, and have fewer available prognostic or 
therapeutic options[3]. Expensive screening and a high rate of 
misdiagnosis contribute significantly to high illness fatality [4-

5]. Endometrial cancer diagnosis and management are difficult 
and complicated, necessitating the competence of 
multidisciplinary team members who are experienced with all 
aspects of its examination and treatment. High body mass 
indices (BMI), as well as diabetes type II and insulin resistance, 
anovulation, menstrual disruption, amenorrhea, and infertility, 
have been linked to an elevated risk of low-grade EC and, in 
newer research, high-grade EC [6]. EC is twice as prevalent in 
overweight women and more than triple the risk in obese 
women. In a large epidemiologic study, the risk of endometrial 
cancers, both type 1 and type 2 carcinomas, was found to 
decrease with increasing age of first childbirth, by 11% overall, 
and the risk for women who first gave birth after 40 years was 
44% lower than women who gave birth before the age of 25 [7-
12]. Breastfeeding decreased the risk of endometrial cancer by 
11% [13-14]. Based on existing meta-analyses, the World 
Cancer Research Fund (WCRF) found that coffee drinking 
likely protects against EC [15]. Analyses show that night shift 
job and sleep length are not significant risk factors for 
endometrial cancer in postmenopausal women [16]. Recently, 
the circadian rhythm has been demonstrated to be connected 
with EC, with the severity of EC being linked to night work and 
rhythm problems. As a result, circadian rhythm disorders 
(CRDs) might be one of the metabolic illnesses causing EC. 
Clock genes (CGs) govern circadian rhythm changes, which are 
further regulated by non-coding RNAs (ncRNAs). More 
significantly, the mechanism of EC induced by ncRNA-
mediated CRDs is rapidly becoming clearer [17]. Lack of 
rhythmic regulation has been anticipated to result in 
uncontrolled growth and malignancy. This hypothesis is 
supported by research showing that circadian disturbance 
caused by low light at night or persistent jet lag increases tumor 
development [18]. According to recent findings, alcohol 
drinking may raise the risk of EC, although coffee and tea 
consumption may minimize it [19-21]. Because EC is 
associated with overweight and obesity, keeping a healthy body 
shape through a nutritious diet and exercise is the most 
significant strategy most women can take to lower their chance 
of developing EC. Women with EC have a higher risk of all-
cause death when their BMI is higher than 40 [22-23]. The 
differential diagnosis faced while evaluating the most frequent 
presenting symptoms and indications of EC, abnormal vaginal 
bleeding and/or pelvic masses, vary from benign localized 
lesions to systemic illnesses and malignancies. Patients with 
endometrial malignancies have a variable prognosis based on 
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several factors such as the histotype, size, grade, and 
comorbidities, in addition to the surgical-pathological staging's 
assessment of the disease's extent [24]. Although the Cancer 
Genome Atlas (TCGA) project has made significant progress in 
understanding the biological heterogeneity of EC, it is still 
unclear how best to apply molecular categorization in relation 
to adjuvant treatment, surgical staging, and surveillance 
scheduling. Devoted efforts are needed to more precisely define 
host factors, such as microbiome composition and the impact of 
BMI, and a deeper understanding of the molecular and 
immunological drivers of response and resistance to emerging 
therapies is crucial for the best possible design of next-
generation studies, in order to manage EC comprehensively. 
Significant copy number abnormalities, little DNA methylation 
changes, low levels of the oestrogen receptor and progesterone 
receptor, and frequent genetic mutations were seen in uterine 
serous tumors and around 25% of high-grade endometrioid 
tumors [25-26]. 

II. MATERIALS AND METHODS 

A. Dataset 

The Tumor Cancer Genome Atlas-Uterine Corpus 
Endometrial Carcinoma dataset was downloaded from the 
Genomics Data Commons Data. More cancer types were 
analyses within genome project, analyzing individual genome 
data. The focus is on Uterine Corpus Endometrial Carcinoma 
(UCEC), its length is 529 patients. The categories included in 
the data are biospecimen, clinical, copy number of variation, 
DNA methylation, proteome profiling, sequence reads, simple 
nucleotide variation, structural variation, transcriptome 
profiling, somatic structural variation.    

 
Fig. 1. Dataset overview [27]. 

 According to the Fig. 1 the immune system impact has 
been analyzed in transcriptomic data, its effect, and aberrant 
genes. Adding to it, genomic data and clinical annotation.  
The features of the dataset such as “Diagnosis Age", 
"Aneuploidy Score", "Subtype", "Patient Weight", "Disease-

specific Survival status", "Fraction Genome Altered", 
"Neoadjuvant Therapy Type Administered Prior To 

Resection Text", "Mutation Count", "Overall Survival 

Status", "Radiation Therapy", "Tumor Type" are only some 

features of the dataset.  

B. Architecture 

Two Machine Learning (ML) approaches (Histogram 
Gradient Boosting Classifier (HGB) and LightGBM Classifier 
(LGBM)) (Fig. 2), which are strong algorithms known for their 
high accuracy in classification tasks, were used to evaluate each 
sample's probability of living without disease. Due to their 
efficiency and speed optimisations, HGB and LGBM are good 
options for analysing huge datasets that are often used in 
medical research. Faster model training and prediction are 
made possible by this efficiency, which might be advantageous 
in clinical contexts where prompt diagnosis is crucial. 
Predicting UCEC frequently entails assessing high-dimensional 
data, including genetic data. Numerous characteristics may be 
included in the prediction model since HGB and LGBM can 
both handle high-dimensional data successfully and efficiently. 

In the context of UCEC prediction, high accuracy is crucial 
for identifying potential cases of endometrial carcinoma 
accurately. Balanced accuracy and precision measures were 
used to assess the model performances based on confusion 
matrices.  

 
Fig. 2. Architecture overview. 

Tree boosting is a popular and very successful ML 
technique. A scalable end-to-end tree boosting technique called 
XGBoost is frequently utilised to produce cutting-edge 
outcomes on a variety of ML tasks. It is a weighted quantile 
sketch for approximation tree learning and a unique sparsity-
aware technique for sparse data. More significantly, it offers 
information on data compression, sharding, and cache access 
patterns to help construct scalable tree boosting systems. 
Combining these discoveries allows XGBoost to operate on 
billions of instances while consuming a fraction of the 
resources of other systems [28]. Native support for missing data 
(NaNs) is available for XGBoost. Based on the potential gain, 
the tree grower determines at each split point during training 
which samples with missing values belong to the left or right 
child. Samples with missing values are subsequently assigned 
to the left or right child when making predictions. Samples with 
missing values are mapped to the child with the most samples 
if no missing values were found for a particular feature during 
training. LightGBM achieves great accuracy while accelerating 
the training process by up to 20 times [29]. 
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III. RESULTS 

A. Feature selection and Interpretation 

There are multiple features in the dataset (62). The most 
prevalent features are as follows: age at diagnosis, Buffa 
Hypoxia Score, Cancer Type, Ethnicity Category, Neoplasm 
Histologic Grade, Overall Survival Status, Race Category, 
Radiation Therapy, Somatic Status, Tumour Type, and Patient 
Weight. During the training phase, all the variables were 
utilized to predict the overall survival status (0: LIVING or 1: 
DECEASED). Table 1 shows the overall status; the dataset 
shape is 529; there are 115 missing values in the overall survival 
status; 359 of them relate to 0-LIVING and 55 of them relate to 
1-DECESEAD. 

TABLE I.  OVERALL SURVIVAL STATUS 

Feature 
Details 

Values 
0: Disease 

Free 
1: Disease 

Overall 
Survival 
Status 

414a 359 55 

a.
 Unique values 

20% (106) of the data utilized in this study were for the 
testing phase, while the remaining data (423) were for the 
training phase.  

B. Statistical Analysis 

The statistical analysis was conducted using JASP (Version 
0.17.1, 2023) in order to seek for trends, patterns, and 
correlations.   

TABLE II.  DESCRIPTIVE STATISTICS 

 Diagnosis Age 

  0:LIVING 1:DECEASED 

Valid  439  87  

Missing  3  0  

Mean  63.171  66.770  

Std. Deviation  10.987  11.003  

Minimum  31.000  35.000  

Maximum  90.000  90.000  

 

 

According to Table II, diagnosis age, which depicts overall 
survival status, occurs in women who are around 66 years’ age. 
But unfortunately, in the data, the earliest age is represented by 
a young adult who is 35 years old. 

Moreover, a highly significant (p-value <0.001) 
relationship has been found between the age of diagnosis and 
the histologic grade of the tumor (G1, G2, G3, High Grade), 
race category (Asian, Black or African American, Native 
Hawaiian or Other Pacific Islander, White), tumor type 
(Endometrioid Endometrial Adenocarcinoma, Mixed Serous 
and Endometrioid Carcinoma, Serous Endometrial 
Adenocarcinoma), subtype (UCEC_CN_LOW, UCEC_MSI, 
UCEC_POLE) according to Table III's ANOVA test.  

 

 

TABLE III.  ANOVA TEST FOR DIAGNOSIS AGE   

Cases Sum of Squares df 
Mean 

Square 
F p 

Neoplasm Histologic 
Grade 

 1834.24  3  611.41  5.11  0.002  

Race Category  2916.89  4  729.22  6.48  < .001  

Tumor Type  3688.45  2  1844.23  15.93  < .001  

Subtype  7579.68  3  2526.56  23.41  < .001  

 

Note.  Type III Sum of Squares 

  

 Additionally, for all numeric variables, Pearson’s 
correlation has been investigated, and the results can be 
observed in Table IV, which presents all variables that have a 
significant correlation (p-value<0.05). The aneuploidy score 
presented high significance related to features such as diagnosis 
age, patient weight, mutation count, tumor mutational burden 
(TMB) (nonsynonymous), birth from the initial pathologic 
diagnosis date, fraction genome altered, MSI sensor score, and 
MSI MANTIS score. 

C. ML Model Performance 

With the characteristics mentioned in the methods section 
as training data, the baseline models achieved 100% test 
accuracy.  

 

Fig. 3. ML Model performance. 

To overcome the missing values in the dataset and achieve 
excellent performance, the performance metrics (accuracy, 
precision, recall, and F1-Score) for the two selected models—
the Histogram Gradient Boosting Classifier and the LGBM 
Classifier—are shown in Fig. 3. 

IV. DISCUSSION 

A key point in this dataset is represented by aneuploidy 
score. In almost common feature of human malignancies is 
aneuploidy, often known as whole chromosome or 
chromosomal arm imbalance. The expression of proliferative 
genes, somatic mutation rate, and TP53 mutation were shown 
to be linked with aneuploidy in 10,522 cancer genomes from 
The Cancer Genome Atlas (TCGA) [30-31]. Chromosome 
aneuploidy and driver mutations are two important factors that 
influence carcinogenesis and have intricate interactions [32]. 
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[33] demonstrates a causal relationship between 
chemoresistance and alterations in gene copy number caused by 
aneuploidy, which may help to explain why some 
chemotherapies are ineffective. A connection has been shown 
lately between ageing, aneuploidy, and whole-chromosomal 
instability (W-CIN)[34]. Regardless of the TP53 genotype, 
individuals with aneuploid-high tumors had unfavorable 
prognoses, according to analysis of the outcome data. The 
findings suggest that the variety of previously documented 
mutant p53 GOF symptoms can be explained by genetic 
variation brought about by aneuploidy [35]. 

Nevertheless, the differential component is typically 
ignored by existing approaches [36], and traditional methods of 
differential analysis either cannot detect combinatorial patterns 
of difference or need a high data completeness rate. To do this, 
this study provides two strong and adaptable ML algorithms 
that may be used to analyze missing data. 

 

 

TABLE IV.  PEARSON’S CORRELATION   

Feature Feature r p

Aneuploidy Score Diagnosis Age 0.230 < .001
Aneuploidy Score Patient Weight -0.102 0.024
Aneuploidy Score Mutation Count -0.229 < .001
Aneuploidy Score TMB (nonsynonymous) -0.229 < .001
Aneuploidy Score Birth from Initial Pathologic Diagnosis Date -0.229 < .001
Aneuploidy Score Fraction Genome Altered 0.860 < .001
Aneuploidy Score MSIsensor Score -0.354 < .001
Aneuploidy Score MSI MANTIS Score -0.335 < .001
Diagnosis Age Patient Weight -0.252 < .001
Diagnosis Age Mutation Count -0.191 < .001
Diagnosis Age TMB (nonsynonymous) -0.196 < .001
Diagnosis Age Birth from Initial Pathologic Diagnosis Date -1.000 < .001
Diagnosis Age Fraction Genome Altered 0.262 < .001
Patient Weight Mutation Count -0.176 < .001
Patient Weight TMB (nonsynonymous) -0.176 < .001
Patient Weight Buffa Hypoxia Score -0.225 0.005
Patient Weight Progress Free Survival (Months) -0.099 0.027

Patient Weight Last Communication Contact from Initial Pathologic Diagnosis Date -0.094 0.043

Patient Weight Birth from Initial Pathologic Diagnosis Date 0.252 < .001
Patient Weight Months of disease-specific survival -0.096 0.031
Patient Weight Overall Survival (Months) -0.096 0.031
Patient Weight Winter Hypoxia Score -0.228 0.004
Mutation Count TMB (nonsynonymous) 0.992 < .001
Mutation Count Ragnum Hypoxia Score 0.244 0.001
Mutation Count Progress Free Survival (Months) 0.254 < .001

Mutation Count Last Communication Contact from Initial Pathologic Diagnosis Date 0.213 < .001

Mutation Count Birth from Initial Pathologic Diagnosis Date 0.191 < .001
Mutation Count Disease Free (Months) 0.250 < .001
Mutation Count Months of disease-specific survival 0.209 < .001
Mutation Count Overall Survival (Months) 0.209 < .001
Mutation Count Fraction Genome Altered -0.234 < .001
Mutation Count MSIsensor Score 0.093 0.035
Mutation Count MSI MANTIS Score 0.093 0.036
TMB (nonsynonymous) Buffa Hypoxia Score 0.204 0.008
TMB (nonsynonymous) Ragnum Hypoxia Score 0.240 0.002
TMB (nonsynonymous) Progress Free Survival (Months) 0.252 < .001

TMB (nonsynonymous) Last Communication Contact from Initial Pathologic Diagnosis Date 0.210 < .001

TMB (nonsynonymous) Birth from Initial Pathologic Diagnosis Date 0.196 < .001
TMB (nonsynonymous) Disease Free (Months) 0.246 < .001
TMB (nonsynonymous) Months of disease-specific survival 0.206 < .001
TMB (nonsynonymous) Overall Survival (Months) 0.206 < .001
TMB (nonsynonymous) Fraction Genome Altered -0.234 < .001
TMB (nonsynonymous) MSIsensor Score 0.089 0.043
TMB (nonsynonymous) MSI MANTIS Score 0.088 0.045
Buffa Hypoxia Score Ragnum Hypoxia Score 0.724 < .001
Buffa Hypoxia Score Winter Hypoxia Score 0.823 < .001
Buffa Hypoxia Score MSI MANTIS Score 0.157 0.038
Ragnum Hypoxia Score Winter Hypoxia Score 0.666 < .001
Ragnum Hypoxia Score MSI MANTIS Score 0.164 0.031

Progress Free Survival (Months) Last Communication Contact from Initial Pathologic Diagnosis Date 0.892 < .001

Progress Free Survival (Months) Disease Free (Months) 0.990 < .001

Progress Free Survival (Months) Months of disease-specific survival 0.909 < .001

Progress Free Survival (Months) Overall Survival (Months) 0.909 < .001

Progress Free Survival (Months) Fraction Genome Altered -0.121 0.006
Last Communication Contact from Initial Pathologic Diagnosis Date Disease Free (Months) 0.900 < .001
Last Communication Contact from Initial Pathologic Diagnosis Date Months of disease-specific survival 0.973 < .001
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Last Communication Contact from Initial Pathologic Diagnosis Date Overall Survival (Months) 0.973 < .001
Last Communication Contact from Initial Pathologic Diagnosis Date Fraction Genome Altered -0.107 0.019
Birth from Initial Pathologic Diagnosis Date Fraction Genome Altered -0.262 < .001
Disease Free (Months) Months of disease-specific survival 0.915 < .001
Disease Free (Months) Overall Survival (Months) 0.915 < .001

Months of disease-specific survival Overall Survival (Months) 1.000 < .001

Months of disease-specific survival Fraction Genome Altered -0.106 0.016

Overall Survival (Months) Fraction Genome Altered -0.106 0.016

Fraction Genome Altered MSIsensor Score -0.352 < .001
Fraction Genome Altered MSI MANTIS Score -0.332 < .001
Winter Hypoxia Score MSIsensor Score 0.180 0.017
MSIsensor Score MSI MANTIS Score 0.948 < .001

The Buffa Hypoxia Score, Ragnum Hypoxia Score, MSI 
MANTIS Score and MSI sensor score, Progress Free Survival 
(Months), Last Communication Contact from Initial Pathologic 
Diagnosis Date, Birth from Initial Pathologic Diagnosis Date, 
Disease Free (Months), Months of disease-specific survival, 
and Overall Survival (Months) all showed that TMB was highly 
significant (Table 4). It has been suggested that TMB may serve 
as a predictive biomarker for immunotherapy in a variety of 
solid tumors, based on the growing data, although more 
prospective validation needs to be conducted. The usual 
practice of oncology now includes the use of TMB [37].  

V. CONCLUSIONS AND FUTURE WORK 

An important contributor to the morbidity and death 
associated with cancer is EC, a frequent uterine malignancy. 
Treatment response is low for EC found at an advanced stage. 

Large-scale data analysis, personalized medical strategies, 
and multidisciplinary cooperation are some of the ways that ML 
techniques have the potential to transform endometrial cancer 
diagnosis, treatment, and prognosis. Ultimately, the aim is to 
lessen the impact that endometrial cancer has on both 
individuals and society by utilizing ML to enhance patient 
outcomes and augment scientific understanding. 

ML approaches might be critical to the diagnosis, treatment, 
and prediction of endometrial carcinoma. Prior to delving into 
an exhaustive genetic study of viable ML approaches for EC 
prevention, screening, detection, and prognosis, this work 
provides an overview of EC, risk factors, and diagnostic tools 
by utilizing statistical analysis and ML across a complex 
dataset. 

In order to address missing values in the data that might 
affect performance and produce a more robust solution, we 
would like to carry out in-depth assessments of various 
potential algorithms as a future research topic. 
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