
979-8-3503-4929-0/24/$31.00 ©2024 IEEE

Using Docker Swarm to Improve Performance in
Distributed Web Systems

 Marian ILEANA
 Interdisciplinary Doctoral School,

Pitesti University Center
 National University of Science and

Technology POLITEHNICA Bucharest

Pitesti, Romania
 marianileana95@gmail.com ,

 ORCID 0009-0008-9624-2202

 Maria Ioana OPROIU
 Faculty of Engineering in Foreign

Languages
 National University of Science and

Technology POLITEHNICA Bucharest

Bucharest, Romania
mariaioanaoproiu1@gmail.com ,
ORCID 0009-0002-0605-3106

 Constantin Viorel MARIAN
Faculty of Engineering in Foreign

Languages
 National University of Science and

Technology POLITEHNICA Bucharest

Bucharest, Romania
constantinvmarian@gmail.com ,

Corresponding author ,
 ORCID 0000-0002-2846-8006

Abstract—This paper presents an approach to improving

performance in distributed web systems by using Docker

Swarm, a container orchestration tool built into Docker that

allows for the management of a cluster of Docker engines. It is

important to efficiently manage tasks and resources within a

distributed environment due to the demand for scalable web

services and increased availability. Docker Swarm provides a

simple and efficient approach to managing Docker containers

across multiple nodes, enabling the automatic distribution and

scaling of web applications. In this article, we explore the

benefits of using Docker Swarm in the context of distributed

web systems, such as optimized resource management,

scalability, and service reliability. Moreover, this text provides

practical examples and case studies to demonstrate how the

Docker Swarm framework can improve the performance and

availability of distributed web applications in diverse

production environments. Additionally, it outlines the benefits

and difficulties related to using Docker Swarm and explores

potential avenues for enhancing the performance of distributed

web systems with this technology.

Keywords—distributed computing, distributed information

systems, computer performance, scalability, internet technology

I. INTRODUCTION

To create and modify complex distributed software
systems, the software industry has adopted multi-cloud
infrastructure [1]. This model works well when it comes to
developing, deploying, and delivering distributed software.
However, these cloud solutions are usually heterogeneous and
cannot be used together. As a result, the complexity of the
software development process and the management of
multi-cloud systems has increased [2]. Virtualization based on
Docker containers has recently emerged as a lightweight
alternative for the software development process, and this
method is gaining ground in the software development
industry [3].

The software development process based on Docker
containers can be scaled to multiple hosts in multiple clouds
without Docker interoperability. As it represents a new
approach to the cloud industry, distributed web development
based on Docker Swarm has great power to provide a
multi-cloud development environment without increasing
system complexity [4].

Docker’s ability to package applications and their
dependencies into small containers that can be quickly
transported, quickly started, and isolated between them [5].

Since the release of Docker, server-side web application
development has changed dramatically. Thanks to the advent

of Docker, it is now possible to develop applications using
micro services that can be easily scaled and managed.
Consider an example to better understand what a micro service
is and how Docker helps deploy them. Imagine there are three
programmers working in a web development team, each using
a different operating system: macOS, Windows, and Ubuntu.
Each of the aforementioned operating systems requires
various specific adjustments. Instead, programmers must
install and configure multiple distinct libraries for their
programming languages. It is inevitable that libraries and
programming languages will conflict in various environments.
Adding additional servers to test and execute only increases
the difficulty of ensuring uniform conditions in every
development environment [6].

In chapter II, an analysis of the relevant literature is made.
Two graphs will be attached and presented along with this
analysis. The first indicates the most important authors for the
keywords "Docker Swarm and Distributed Web Systems",
and the second indicates the location of the countries where
the authors work within the research centres. Chapter III,
entitled "Methodology" initially deals with introductory
theoretical aspects of Docker and its architecture. Docker
Swarm features are also presented. Next, we initiate a
distributed network via Docker. In chapter IV, we implement
the concept of load balancing in the network to balance the
tasks that are inside each node and prevent overcrowding. In
the "Conclusion" chapter, we emphasize the importance of
using Docker Swarm for an efficient orchestration of the
available resources and their distribution in the cluster.

II. RELATED WORK AND LITERATURE REVIEW

A study by N. Marathe, A. Gandhi, and J. M. Shah [7].
Technology distribution computing that contributes to the
implementation of a new computing infrastructure based on
the virtualization of the necessary resources. By using the
latest cloud application development paradigm, which allows
expansive user access to these resources, workloads will grow
rapidly on the server. This continuous expansion in volume
leads to the efficient underutilization of available resources.
This reason for the care of this technology is brought and
presented to the public. The article’s authors’ objective is to
balance the loads on each node of the tested network. This
approach will facilitate the distribution of tasks among various
nodes, avoiding overloading a single central point. Thus, this
effort involves understanding the concepts of Docker and
containers, which will help develop the concepts of container
clustering and Kubernetes technology. In concluding the
study, the authors’ effort has demonstrated how services are

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

115

accessed by nodes in a cluster using both Docker Swarm and
Kubernetes and also explained the difference between them.

An article by Naik [8], the software development industry
has adopted a multi-cloud infrastructure for designing and
adapting highly complex and distributed software systems.
This new hybrid cloud infrastructure allows combining and
adapting cloud platforms and providers for various activities
involving software development. There are many advantages
to multi-cloud infrastructure, such as reducing reliance on a
single provider and minimizing the risk of large-scale data loss
or downtime. However, there are also multiple challenges,
such as increased complexity due to different technologies,
interfaces, and services. Docker has introduced a container
based software development method in recent years and has
gained a large share of the software industry market. It
recently introduced a system development tool called Swarm,
which extends the Docker container-based software
development process across multiple clouds without
encountering classic interoperability issues. Distributed
software development based on Docker Swarm represents an
innovative approach for the cloud industry; however, it has
immense potential to provide a multi-cloud development
environment, removing the worry of its complexity. The
author’s paper presents a simulation of building a virtual
system of systems (SoS) for the distributed software
development process on multiple clouds. Virtual SoS
simulation is based on Docker Swarm, Virtual Box,
Mac OS X, nginx, and Redis. However, the same SoS can be
created on any of the clouds supported by Docker, simply by
replacing the driver name with the preferred cloud name, like
this: Digital Ocean, Google Compute Engine, Amazon Web
Services, Microsoft Azure, etc.

The analysis carried out by Cerin et al. [9] presents initial
concepts of a new scheduling strategy integrated into the
Docker Swarm scheduler. The purpose of this paper is to
introduce the fundamental principles and implementation
details of a new scheduling strategy based on various Service
Level Agreement (SLA) categories. Their proposed approach
addresses the problems faced by companies that manage a
private computing infrastructure and want to optimize the
scheduling of multiple requests sent online by users. Each
request represents a request to create a container. At the
moment, Docker Swarm makes use of three fundamental
scheduling techniques: spread, binpack, and random. Each of
these techniques gives a container a set amount of resources.
However, the novelty of the authors’ proposed strategy is to
use the user’s SLA class to determine the resource allocation
for the container, dynamically taking into account the number
of CPU cores required according to the user’s SLA and the
workloads of the parallel computing machines within the
infrastructure. Their testing of the proposed new strategy is
done by emulating different components of our general
frameworks and highlighting the potential of their approach
for future developments.

Applying a dynamic analysis method to the topic of
distributed web systems, especially Docker Swarm, specialty
sites offers a wide range of articles signed by a large number
of writers. This empirical study was conducted using the
”Dimensions.ai” platform as a database and its search
functionality. To facilitate the identification of authors who
have published on this topic, the results were interpreted using
the VOSviewer application. This resulted in a graph. The
dataset contains 7141 authors. An author’s relevance is

determined by appearing as an author in at least three papers,
and that author was also required to have at least two citations.
A total of 585 authors met these criteria (see Fig. 1).

Fig. 1. A graphic map of authors for the search term "Docker Swarm and
Distributed Web Systems"

In addition, we created a map of the countries from which
these authors, who write articles about Docker Swarm and
distributed web systems, come from using the same data set.
For a country to be considered relevant, it had to have at least
three fives, each with at least three citations. The total number
of countries from which the authors originated is 88; after
applying the previously mentioned criteria, 60 countries met

the conditions (see Fig. 2).

Fig. 2. A country map of authors for the search term "Docker Swarm and
Distributed Web Systems"

III. METHODOLOGY

A. Theorical introduction

1) Docker: Docker is a platform that makes it easy for
developers to package their software in containers. The

application itself, as well as all the libraries and other
dependencies it needs to function, are gathered into a single

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

116

unit in these containers. This makes it much simpler to deploy
and consistently run applications in different software
development environments [10].

Major benefits of using Docker [11]:

• Portability: Regardless of the underlying operating
system, Docker containers can operate on any
deployed Docker system. This allows developers to
develop and test applications on their local devices,
confident that they will run smoothly on production
servers.

• Isolation: Applications cannot interfere with each other
or the host system because each Docker container runs
in an isolated environment. This can improve stability
and security.

• Reproducibility: Docker containers are built according to
instructions, so they are easy to reproduce. This makes
it easy to ensure that all developers and testers are
working in an identical environment.

2) Docker Architecture: The architecture of virtual
machines and Docker software containers (see Fig. 3) is
comparable [14]. The stack on the right is a virtual machine
that uses a hypervisor to emulate the guest operating system.
The application software, dependencies, and guest operating
system are all included in a virtual machine (VM). Each
requires a separate VM, dependencies, and the application
host operating system to be deployed. The stack on the left
illustrates the Docker container software on a Linux host.
Docker bundles the program and its dependencies into
modular containers using the host Linux operating system.
No VM is required, and OS resources for the two application
stacks are shared between different containers. The middle
stack illustrates Docker on a non-Linux system. Docker needs
Linux to function, so in order to execute Docker and enclose
the software containers, a basic virtual machine (VM) with a
mini-Linux guest OS is needed. This still has the advantage
that there is only one VM and a guest Linux system required,
regardless of the number of containers.

Fig. 3. Diagram of the Docker architecture depending on the development
environment

3) Docker Swarm: Docker Swarm is a tool that Docker
Engine includes to orchestrate containers. It allows you to
manage a unified Docker cluster of multiple physical or
virtual machines. Each machine that is part of the cluster is
called a node. One or more nodes manage the swarm and
supervise the activity of the other nodes in the cluster [12]

Key features of Docker Swarm [13]:

• Clustering: Swarm enables containers to run as a single
distributed system by grouping together multiple
machines. Since a single failed container will not
prevent the entire application from running, this
ensures high scalability and redundancy.

• Simple to use: Swarm is quite simple to set up and use
because it is built into the Docker Engine. With a few
Docker commands, you can create a Swarm cluster.

• Scheduling automation: Swarm ensures efficient
resource utilization by automatically distributing
containers to cluster nodes. It can also restart failed
containers on other nodes, making the application
more accessible.

Organizations looking for a simple container orchestration
solution that is already integrated with Docker will find
Swarm a great option [12]. However, other tools like
Kubernetes may be better for more complex or large-scale
orchestrations [7].

B. Load Balancing

Internal load balancing and the ingress routing mesh are
the basic methods used to route traffic and manage incoming
requests. By employing the container DNS records, for
example, a round robin technique is used by default for load
balancing (e.g. App.1 > App.2 > App.3 > App.1 > App.2 . . .
and so on) [15].

A bridge network cannot be used with swarms since it is
specific to a single Docker host. Table 1 represents the
architecture of the system where we deploy this experiment.

TABLE I. COMPUTER HARDWARE COMPONENTS

Hardware

Component
Specification

Processor Intel Core i7-1165G7 2.8 GHz

Memory 16 GB DDR4

Graphics card NVIDIA GeForce GTX 1650 Ti 4 GB DDR6

Storage / Hard drive 1 TB NVMe SSD

Operating system Windows 10 Pro 64-bit

(Main computer components)

In Fig. 4 is represented the installing Chocolatey, using
PowerShell. Chocolatey is used to install Docker, using the
last command in the figure. Chocolatey is a package manager
in Windows. It allows users to automate the process of
installing, updating and managing software packages on the
Windows machines.

Similar to package managers in Linux distributors like
apt-get or yum, Chocolatey provides a command-line
interface CLI through which users can search for installing,
updating and uninstalling software packages with ease.

Chocolatey utilizes a repository of software packages,
which are maintained by the Chocolatey community. Users
can access this repository to find and install a wide range of
software applications, tools and utilities.

Chocolatey shows as some advantages, one of them is its
ability to streamline the software management process,
allowing also users to easily install and update multiple

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

117

software packages with a single command line. This can be
useful also for administrators, developers and power users
frequently work with software installations and updates on
Windows machines.

Fig. 4. Docker Swarm Cluster architecture

Also, Chocolatey ensures consistent installations of
software packages by handling dependencies and
configurations automatically. This helps prevent issues related
to missing dependencies or incompatible software versions.

Chocolatey can be easily integrated into various scripts
and automated workflows, allowing for efficient software
deployment and configuration management. This is
particularly useful for system administrators and DevOps
professionals who need to manage software installations
across multiple machines.

Fig . 5. Docker Swarm Cluster architecture

Using Docker and Chocolatey has multiple advantages.
Docker ensures consistency in application environments
across different stages of development lifecycle.

By combining Docker with Chocolatey, we can not only
maintain consistency within Docker containers, but also
ensure that the software installed within these containers is
managed across development, testing and production
environments using Chocolatey. Chocolatey simplifies the
installation and management of software packages on
Windows.

By using Chocolatey within Docker containers,
developers can easily specify and manage dependencies
required by their applications. This ensures that the required
software components are installed and configured correctly
within the Docker environment, reducing the risk of
compatibility issues.

Instead of using an overlay network, which is dispersed
across numerous hosts, we must utilize a swarm, which
employs multiple hosts [16] (see Fig. 5).

Fig 6. Representation of starting the Docker instances

We are going to deploy the stack using the docker stack
deploy command, "-c" is our compose file. If we run this
command from inside the correct container because we have
already attached it to the node manager, it should be deployed
on the node manager itself.

Regarding the displayed result after running this
command, we notice that it will not create the networks.
Further, to see the stacks we have available in our folder, we
used the stack ls command. After running this command, we
notice that we have a stack, on which two services are running,
within Orchestration Swarm [17].

After we run the docker stack ps php-mysqli-apache
command, we notice that we have 6 running instances, all of
them are in the state of running. This is the way we want to
have it. To see which nodes are connected to the processes, we
will run the command docker-machine ssh nodemanager
"docker ps", which will show us which Docker containers are
running on the host (see Fig. 6) [18].

IV. RESULTS

If we try to unlock localhost, we will not succeed; we will
have an error because there is no host that is currently running
on our machine. What we can do now, in order to work, is to
find the IP of the host, which we will find using the simple
command docker-machine ip nodemanager. Thus, we can see
the displayed IP, namely 192.168.1.29. This is how Swarm
works. Finally, if we want to destroy this Swarm, we can do it
simply with the help of a command, namely docker stack rm
php-mysqli-apache [19].

Thus, we can delete a swarm, but it will not delete the
network because it was created outside the stack. After
deleting the stack, if we run again the command to display
elements within a folder, namely docker stack ls, we will be
able to see what is left without any stack, because we deleted
them. Finally we execute the command docker-machine ssh
nodeworker "docker ps" and these processes are not running,
they are stopped and will close (see Fig. 7) [20].

The novelty of this paper was through the design and
implementation of the system. We have developed an
architecture so that the Docker Swarm solution can be
implemented, in order to achieve load balancing. We
evaluated the performance of the solution through tests and
measurements, resulting in data on the improvements brought

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

118

by the use of this solution. We also analyzed and interpreted
the collected data, highlighting the advantages and
disadvantages of Docker Swarm.

Fig 7. Load balancing result

V. CONCLUSIONS

In conclusion, using Docker Swarm within distributed
web systems is a practical and effective method for improving
performance and scalability. By managing containers with
Docker in a distributed environment, Docker Swarm will
facilitate efficient resource orchestration and load distribution
across the cluster. Thus, it allows the dynamic adaptation of
the infrastructure to the fluctuating requirements of web
applications and ensures the continuous availability of web
services.

In addition to failing to secure the Swarm with TLS and
improperly managing sensitive data, other common issues in
Docker Swarm deployments include failing to implement
proper authentication and authorization mechanisms, leaving
the cluster vulnerable to unauthorized access and potential
data breaches. Furthermore, insufficient network
segmentation and firewall policies might expose internal
services and data to external attacks, jeopardizing the Swarm's
overall security posture. Failure to update and patch Docker
engines, Swarm components, and host operating systems on a
regular basis might result in security vulnerabilities and
attacks.

Using Docker Swarm in distributed web systems enables
efficient orchestration of their Docker containers across
multiple nodes, facilitating scalability and load management
in a simplified and robust manner.

Furthermore, inadequate logging, monitoring, and
auditing methods may result in unreported security events or
compliance breaches, impeding incident response and
regulatory compliance efforts. Furthermore, a lack of disaster
recovery planning and testing may expose the Swarm to data
loss, extended downtime, and business continuity problems in
the case of system failures or calamities.

For Docker Swarm monitoring collecting metrics is the
base foundation. Monitoring Docker Swarm entails gathering
a wide range of metrics to acquire a full understanding of the
health and performance of services operating on the cluster.

These metrics provide the foundation for evaluating resource
use, detecting bottlenecks, and optimizing application
deployment. CPU and memory consumption are important
indicators for understanding workload and resource allocation
across nodes and containers. Network traffic measurements
are used to monitor data transfer rates, identify
communication patterns, and discover abnormalities that may
signal network faults or security risks.

Monitoring service response times also enables the
evaluation of application performance and user experience,
assisting in the identification of sluggish or inefficient services
that need to be optimized. By collecting and analyzing these
metrics, Docker Swarm administrators may proactively
discover difficulties, fix problems, and optimize resource
allocation to maintain their installations' stability, scalability,
and efficiency.

Docker Swarm proves to be a useful solution for software
development teams who want to optimize the performance
and availability of distributed web applications, due to the
benefits it offers.

However, it is essential to properly understand and
manage the increased architectural complexity and increased
maintenance costs associated with implementing and
managing such a system that includes Docker Swarm.

As future development, Docker Swarm is beneficial when
used for:

1) Web applications: Docker Swarm is great for deploying
and administering online applications like e-commerce
sites, social networks, blogs, and content management
systems. Its horizontal scaling capability, traffic
distribution over several nodes, and high availability
ensure that web-based applications run reliably and
efficiently. Furthermore, Docker Swarm's declarative
service definition paradigm streamlines application
deployment and upgrades, making the development
and release process easier for web developers.

2) Microservices: Swarm is ideal for delivering and
maintaining microservices designs, which divide
programs into tiny and independently deployable
services. Docker Swarm's service orchestration
features enable the deployment, scaling, and load
balancing of microservices throughout the cluster,
resulting in increased agility, scalability, and
resilience. Containerization allows each microservice
to function in isolation, with its own dependencies and
customizations, while yet benefiting from Docker
Swarm's administration and resource usage [21].

3) Continuous Integration (CI) and Continuous Delivery
(CD): Docker Swarm may play a critical role in
automating the CI/CD process, allowing enterprises to
deploy software changes more rapidly, reliably, and
consistently. Docker Swarm interacts smoothly with
CI/CD pipelines, enabling developers to automatically
create, test, and deploy apps in containerized
environments. Teams may use Docker Swarm
capabilities like rolling updates, blue-green
deployments, and automatic scaling to fulfill
continuous integration and delivery goals, which
reduces time-to-market and ensures software release
quality [22].

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

119

REFERENCES

[1] J. Hong, T. Dreibholz, J. A. Schenkel, and J. Hu, “An overview of
multicloud computing,” in Advances in intelligent systems and
computing, 2019, pp. 1055–1068. doi: 10.1007/978-3-030-15035-8
103.

[2] L. Gupta, R. Jain, M. Samaka, A. Erbad, and D. Bhamare,
“Performance evaluation of Multi-Cloud management and control
systems,” Recent Advances in Communications and Networking
Technology, vol. 5, no. 1, pp. 9–18, Dec. 2016, doi:
10.2174/2215081105999160523095630.

[3] A. Azab, “Enabling docker containers for High-Performance and
Many-Task computing,” 2017 Ieee International Conference on Cloud
Engineering (Ic2e), Apr. 2017, doi: 10.1109/ic2e.2017.52.

[4] E. N. Preeth, J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of
Docker containers based on hardware utilization,” 2015 International
Conference on Control Communication & Computing India (ICCC,
Nov. 2015, doi: 10.1109/iccc.2015.7432984.

[5] T. N. Bui, “Analysis of Docker Security,” arXiv (Cornell University),
Jan. 2015, [Online]. Available: https://arxiv.org/pdf/1501.02967.pdf

[6] S. Wang, L. Zhu, and M. Cheng, “Docker-based Web Server
Instructional System,” 2019 IEEE/ACIS 18th International Conference
on Computer and Information Science (ICIS), Jun. 2019, doi:
10.1109/icis46139.2019.8940219.

[7] N. Marathe, A. Gandhi, and J. Shah, “Docker swarm and kubernetes in
cloud computing environment,” 2019 3rd International Conference on
Trends in Electronics and Informatics (ICOEI), Apr. 2019, doi:
10.1109/icoei.2019.8862654.

[8] N. Naik, “Building a virtual system of systems using docker swarm in
multiple clouds,” 2016 IEEE International Symposium on Systems
Engineering (ISSE), Oct. 2016, doi: 10.1109/syseng.2016.7753148.

[9] C. Cerin, T. Menouer, W. Saad, and W. B. Abdallah, “A New Docker
Swarm Scheduling Strategy,” In 2017 IEEE 7th International
Symposium on Cloud and Service Computing (SC2), Nov. 2017, doi:
10.1109/sc2.2017.24.

[10] W. M. C. J. T. Kithulwatta, K. P. N. Jayasena, B. T. G. S. Kumara, and
R. M. K. T. Rathnayaka, “Docker incorporation is different from other
computer system infrastructures: A review,” 2021 International
Research Conference on Smart Computing and Systems Engineering
(SCSE), Sep. 2021, doi: 10.1109/scse53661.2021.9568323.

[11] T. Vase, “Advantages of Docker,” Jan. 2015, [Online]. Available:
https://jyx.jyu.fi/handle/123456789/48029

[12] B. Magableh and M. Almiani, “A self healing Microservices
Architecture: A case study in Docker Swarm Cluster,” in Advances in
intelligent systems and computing, 2019, pp. 846–858. doi:
10.1007/978-3-030-15032-7 71.

[13] D. Sæther, “Security in Docker Swarm: orchestration service for
distributed software systems,” 2018. [Online]. Available:
https://bora.uib.no/bora-xmlui/handle/1956/18649

[14] S. Noor, B. Koehler, A. Steenson, J. Caballero, D. Ellenberger, and L.
Heilman, “IOTDOC: a Docker-Container based architecture of
IoTEnabled cloud system,” in Studies in computational intelligence,
2019, pp. 51–68. doi: 10.1007/978-3-030-24405-7 4.

[15] J. Qian, Y. Wang, X. Wang, P. Zhang, and X. Wang, “Load balancing
scheduling mechanism for OpenStack and Docker integration,” Journal
of Cloud Computing, vol. 12, no. 1, Apr. 2023, doi: 10.1186/s13677-
023-00445-3.

[16] N. Singh et al., “Load balancing and service discovery using Docker
Swarm for microservice based big data applications,” Journal of Cloud
Computing, vol. 12, no. 1, Jan. 2023, doi: 10.1186/s13677-022-00358-
7.

[17] J. Cito and H. C. Gall, “Using docker containers to improve
reproducibility in software engineering research,” Proceedings of the
38th International Conference on Software Engineering Companion.,
May 2016, doi: 10.1145/2889160.2891057

[18] C. Huang and C.-R. Lee, “Enhancing the Availability of Docker Swarm
Using Checkpoint-and-Restore,” 14th International Symposium on
Pervasive Systems, Algorithms and Networks & 2017 11th
International Conference on Frontier of Computer Science and
Technology & 2017 Third International Symposium of Creative
Computing (ISPAN-FCST-ISCC), Jun. 2017, doi: 10.1109/ispan-fcst-
iscc.2017.69.

[19] О. Романов, V. Mankivskyi, L. Veres, and I. Saychenko, “Analysis of
Performance in Docker Net deployed in AWS cloud,” 2021 IEEE 8th
International Conference on Problems of Infocommunications, Science
and Technology (PIC S&T), Oct. 2021, doi:
10.1109/picst54195.2021.9772184.

[20] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, and K. N. B.
Murthy, “Docker container security via heuristics-based multilateral
security-conceptual and pragmatic study,” 2016 International
Conference on Circuit, Power and Computing Technologies
(ICCPCT), Mar. 2016, doi: 10.1109/iccpct.2016.7530217.

[21] N. Singh et al., “Load balancing and service discovery using Docker
Swarm for microservice based big data applications,” Journal of Cloud
Computing, vol. 12, no. 1, Jan. 2023, doi: 10.1186/s13677-022-00358-
7.

[22] A. C. Codex, “Integrating Continuous Deployment Pipelines with
Docker Swarm,” Reintech, https://reintech.io/blog/integrating-
continuous-deployment-pipelines-docker-swarm (accessed 16 April
2024).

17th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 23-25, 2024

120

