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Abstract—Spectrum Sensing techniques have evolved 
significantly, transitioning from traditional approaches to more 
complex Machine Learning and Deep Learning based 
approaches. This evolution has led to enhanced performance 
capabilities but has also introduced substantial computational 
demands, which in turn have constrained the scalability of 
large-scale deployments due to associated costs. Nevertheless, 
the advent of Cloud Computing offers a promising solution by 
enabling the centralized processing of data at the cloud level, 
thereby reducing the computational load on field-level sensors. 
This shift facilitates cost-effective deployment and enhances the 
scalability of spectrum sensing applications. In this study, we 
introduce and evaluate a Cloud-Enabled Spectrum Sensing 
architecture, with a specific focus on the computational and data 
transmission requirements from the perspective of the sensing 
node. We explore and compare two data formats for radio signal 
processing: I/Q samples and FFT series. Our evaluation covers 
the computational demands for processing and transmitting 
these data formats to a Cloud Data Fusion Center across a range 
of radio spectrum bandwidths. Moreover, we examine the 
latencies involved in data transfer. Our analysis reveals that the 
FFT series data format offers considerable advantages for this 
architecture, achieving an optimal balance between 
computational requirements and network load. Specifically, for 
the recording and transmission of a 30 MHz wide radio band 
using the TCP protocol, the FFT format requires only 0.3 
GFLOPS for processing and 6.7 MB/s for data transfer. These 
findings underscore the potential of the FFT series as a highly 
efficient radio signal representation format for Cloud-Enabled 
Spectrum Sensing architectures, promising significant 
improvements in scalability and operational efficiency. 
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I. INTRODUCTION  
In recent years, the deployment of Wireless Sensor 

Networks (WSNs) within the Internet of Things (IoT) 
paradigm has experienced significant growth due to the large 
potential for applicability in multiple applications such as 
environment monitoring [1], human machine interaction 
systems [2], [3], [4] and healthcare [5],[6]. This expansion has 
led to an increase in the number of WSNs, each requiring  
access to radio spectrum resources for the transmission of data 
collected from the sensors to gateways, which then relay this 
data to the internet for subsequent storage and analysis. 
Predominantly, these networks employ Low Power Wide 
Area Network (LPWAN) wireless protocols, such as 

LoRaWAN [7] and Sigfox [8], for data transmission to 
gateways. These protocols are primary using the 868 MHz 
Short Range Device (SRD), 915 MHz Industrial, Scientific, 
and Medical (ISM), and 2.4 GHz ISM frequency bands, all of 
which offer limited bandwidth. Furthermore, the majority of 
LPWAN protocols utilize the ALOHA [9] method, which 
does not provide acknowledgment for transmitted data 
packets. Given these constraints, the increase in connected 
wireless sensors is anticipated to generate interference, 
collisions, data loss, and consequently, a low Quality of 
Service (QoS) and constrained scalability of WSNs. 

To address these challenges, in years there has also been a 
notable advancement in Spectrum Sensing (SS) techniques. 
SS encompasses a suite of methodologies aimed at collecting 
radio signals from the radio spectrum, processing them, and 
analyzing specific metrics as to determine its current state. 
The applications of SS are diverse, ranging from the detection 
of the presence or absence of radio transmissions within a 
frequency band [10], identification of the wireless 
communication protocol or modulation being used [11], to 
anomaly detection [12]. These developments in spectrum 
sensing techniques are set to overcome the aforementioned 
issues, enhancing the efficiency and scalability of WSNs in 
the IoT ecosystem.  

However, spectrum sensing techniques have seen a shift 
from traditional signal processing approaches, to 
methodologies that are based on machine learning (ML) and 
deep learning (DL) algorithms [11], [13], [14], [15], [16]. 
These novel methodologies offer a significant leap in 
performance over traditional methods like energy detection 
[17], but come with higher computational demands. These 
demands can be effectively managed using GPU hardware 
acceleration, however, such a SS architecture wouldn’t be 
scalable, as each sensing node in the SS architecture would 
require high-end hardware configuration, implying a high 
implementation cost. 

The challenges posed by the high computational demands 
of modern SS techniques, particularly those based on ML and 
DL algorithms, can be effectively addressed through cloud 
computing. Cloud computing enables individuals and 
organizations to access and utilize computing resources, such 
as servers, storage, databases, networking, software, analytics, 
and AI over the internet. It offers the ability to scale computing 
resources quickly and efficiently, which often leads to cost 
savings. Additionally, cloud computing provides high 
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flexibility, improved performance, and reduced maintenance 
requirements for IT resources. Considering this, in this paper, 
we propose and analyze a Cloud-Enabled Spectrum Sensing 
(CESS) architecture. This architecture delegates all necessary 
computational tasks for data processing to a centralized entity 
in the cloud. Meanwhile, the sensing nodes are tasked solely 
with gathering the spectrum data and forwarding it to the 
cloud. This approach leverages the power of cloud computing 
to handle the intensive computational needs of advanced 
spectrum sensing methods, thereby simplifying the role of 
sensing nodes and enhancing the overall efficiency and 
scalability of the system. Our analysis focuses on the 
architecture from the perspective of the sensing node. Initially, 
we undertake a comprehensive examination of the most 
efficient data format, considering the computational needs of 
the sensing node and the internet bandwidth necessary for 
transmitting the collected spectrum data to the cloud across 
various recorded signal bandwidths. Following this, we 
analyze the latencies associated with the process of data 
transmission. 

The structure of this paper is organized as follows: Section 
II provides an overview of our proposed architecture for 
CESS. Section III presents the implementation details of our 
architecture, outlining the specific methodologies and 
technologies utilized. Section IV presents the results obtained 
from our implementation, along with an analysis of the 
performance metrics of our CESS architecture. Finally, 
Section V concludes the paper, summarizing the key findings 
and contributions of our work. 

II. CLOUD-ENABLED SPECTRUM SENSING 
As stated in the introduction, the literature has shown in 

the past years a transition from the traditional SS approaches  
to ML and DL approaches, due to the advantages it brings in 
terms of performance, accuracy and the versatility of 
applications, moving from the detection of unused frequency 
channels to wireless protocol or modulation detection, 
spectrum anomaly detection, and even wireless network 
optimization. If the latter approaches based on traditional 
signal processing methodologies could be easily deployed at 

the sensing node level, as they required low computational 
resources [18], for example, in the case of energy detection, 
the node would have to calculate the total energy in a 
frequency band and compare it to a threshold, the ML and DL 
approaches require high computational resources for 
inference. For example, in one of our previous papers [11], we 
used the second iteration of the YOLO architecture [19] for 
performing IoT technology detection and classification, which 
roughly needs 8.52 GFLOPs in order to perform detection. 
Other approaches in the literature show the use of 
Autoencoder networks for anomaly detection [12], residual 
CNNs [16], or image classification CNNs [20], all requiring 
high computational resources, as it has been shown multiple 
times that shallow networks with a low number of layers and 
parameters can generate suboptimal accuracies.  

However, as we have previously highlighted, the 
computational demand challenges of ML and DL algorithms 
can be significantly reduced through cloud computing 
services. Recent progress in technology has demonstrated that 
ML and DL services can run efficiently on cloud platforms, 
and effectively reallocating the processing workload from 
local devices to the more potent computational resources 
found in the cloud [21], [22]. This setup allows users to 
leverage advanced ML/DL algorithms without the need for 
extensive computing power on their end. A leading example 
of such innovation is OpenAI's ChatGPT [23], a cutting-edge 
AI chatbot, which offers AI processing services through API 
interfaces. Furthermore, deploying AI in the cloud has the 
added benefit of centralizing AI operations to a few core 
locations in the cloud, thereby eliminating the need to 
individually update each device running the AI algorithm. 
This approach not only simplifies the management of ML/DL 
deployments but also enhances the scalability and flexibility 
of AI applications in various domains. Building on this 
premise, we introduce CESS architecture as illustrated in 
Fig.1. This architecture is split into two main components. The 
core of this system is the Cloud Data Fusion Center (CDFC), 
a centralized hub where data from various sensing nodes is 
aggregated. At the CDFC, each sensing node is assigned a 
specific processing pipeline dedicated to data collection, AI-
driven processing, and detection. The results of these 
detections are forwarded to an application, ensuring that the 
information is readily accessible to users whenever required. 

The second component comprises the sensing nodes 
themselves. As previously mentioned, these nodes are 
designed to fulfill minimal processing requirements, primarily 
focusing on the collection of spectrum data. This data is then 
transmitted to the CDFC via internet protocol for subsequent 
analysis and processing. To enhance the architecture's 
deployment flexibility and adaptability, we advocate for the 
utilization of Software Defined Radios (SDRs) in the data 
gathering process. SDRs offer the advantage of being easily 
reconfigurable and tunable, avoiding the need for physical 
hardware modifications. This approach not only streamlines 
the process of spectrum data collection but also significantly 
expands the potential applications and efficiency of the CESS 
architecture.  

III. IMPLEMENTATION AND ANALYSIS OF THE CLOUD-
ENABLED SPECTRUM SENSING ARCHITECTURE 

In this section we provide the implementation details of 
our proposed CESS architecture, along with the methodology 
for determining the performance requirements of such an 
architecture. The CESS architecture we implemented 

Fig. 1. Overview of the Cloud-enabled Spectrum Sensing 
architecture 
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comprises two main components, with the first being CDFC. 
We used the cloud computing infrastructure of Stefan cel 
Mare University of Suceava [24] to set up the CDFC, 
deploying a virtual machine (VM) designed for this purpose. 
This VM is powered by 8 Intel Xeon Icelake CPU cores and 
is equipped with 1 TB of RAM and 16 TB of storage space. It 
runs on Ubuntu version 22.04 and can deliver approximately 
200 GFLOPS of computational power. 

For the deployment of the sensing nodes, we opted for a 
Raspberry Pi 3B+, integrated with a Lime SDR [25], and 
running on PiSDR OS. To facilitate the interfacing with the 
LimeSDR we utilized GNURadio [26], an open-source 
application that provides software-based signal processing 
tools. One of the key features of GNURadio is its support for 
data transfer from the sensing node to the CDFC using two 
protocols: TCP and UDP. It includes specific sink and source 
blocks for these protocols. Despite the common preference for 
UDP in streaming applications due to its low latency, we 
chose TCP for our CESS architecture to prioritize spectrum 
data integrity. 

Within this setup, we considered two data formats for 
transmitting captured radio spectrum data: I/Q coordinates 
and FFT series. Fig. 2 illustrates the GNURadio flowgraphs 
for processing and transmitting both data types. I/Q samples 
have the benefit of requiring no preprocessing before 
transmission to the TCP sink, which then forwards the data to 
the CDFC. On the other hand, FFT series, although needing 
processing, can enhance performance by reducing bandwidth 
requirements. 

To evaluate the efficiency of these data types, we assessed 
the required computational power measured in GFLOPS and 
the necessary internet data rate for various radio signal 
bandwidths, including 500kHz, 1 MHz, 2 MHz, 5 MHz, 10 
MHz, 20MHz, and 30 MHz. Furthermore, to comprehensively 
assess the CESS architecture's performance, we measured the 
Round-Trip Time (RTT) of the acknowledgment packet 
across all considered bandwidths and data representation 
formats. These measurements were conducted using 
Wireshark [27] at the CDFC level, capturing TCP packets for 
a 30 s interval of radio spectrum data transmission. We applied 
a filter for the designated TCP port and utilized the 
tcp.analysis.ack_rtt function to record the RTT, thereby 
obtaining a detailed analysis of the system's efficiency in 
terms of latencies vs. recorded bandwidth. 

IV. PERFORMANCE ANALYSIS, RESULTS AND DISCUSSIONS 
In this section, we present the performance evaluation of 

the CESS architecture, using the performance metrics 
previously outlined. Our analysis initially focuses on the 
computational power required for processing the spectrum 
data across all recorded bandwidth values, considering both 
I/Q coordinates and FFT series data formats. To accurately 
determine the computational demands of each data type across 
the various bandwidths, we employed the perf stat tool, part 
of the linux-tools-common package. This tool is instrumental 
in measuring the computational requirements of an isolated 
process, providing accurate data on the processing power 
needed for our architecture to function efficiently. Moreover, 
we extended our analysis to include the internet data rate 
necessary for each data format at every bandwidth level under 
consideration. This aspect of the evaluation is crucial, as it 
directly impacts the efficiency of data transmission from the 
sensing nodes to the CDFC.  

TABLE 1. REQUIRED COMPUTATIONAL POWER AND INTERNET DATA RATE 

Data type 

Recorded 
Radio 

Bandwidth 
(MHz) 

Measured 
internet 
data rate 
(MB/s) 

Required 
computational 

power (GFLOPS) 

I/Q 0.5 4.00 0.002634 

I/Q 1 8.00 0.008003 

I/Q 2 16.00 0.015451 

I/Q 5 40.00 0.043534 

I/Q 10 41.00 0.044638 

I/Q 20 43.00 0.068523 

I/Q 30 43.00 0.071155 

FFT 0.5 2.00 0.007637 

FFT 1 4.00 0.017193 

FFT 2 6.20 0.029847 

FFT 5 6.20 0.051396 

FFT 10 6.20 0.105519 

FFT 20 6.20 0.203757 

FFT 30 6.70 0.300842 

Fig. 2. GNURadio Flowgraphs: Sensing Node and CDFC for I/Q and FFT series data formats 
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The analysis results presented in Table 1 reveals a notable 
difference in the computational and internet data rate 
requirements between the I/Q data format and FFT series 
within the CESS architecture. For the I/Q data format, we 
observed that the computational power needed is minimal, 
peaking at just 0.07 GFLOPS. Such low computational 
demands are well within the capabilities of micro-computers 
like the Raspberry Pi. However, the I/Q format demands 
significantly higher internet data rates, which increase linearly 
with the bandwidth of the recorded radio signal. This increase 
is attributable to the size of the I/Q data format as each I/Q 
sample is stored in the numpy.complex64 format, requiring 8 
Bytes per sample. In theoretical terms, for bandwidths ranging 
from 10 MHz to 30 MHz, the internet data rate needed would 
scale from 80 MB/s to 240 MB/s. Nevertheless, due to 
hardware limitations of the Raspberry Pi, this data rate is not 
feasible beyond a 5 MHz bandwidth. On the other hand, 
converting the I/Q samples into FFT series resolves the high 
internet data rate requirement, without imposing substantial 
computational demands. The computational power needed for 
FFT series ranges from 0.007 GFLOPS at a 500 kHz 
bandwidth to 0.3 GFLOPS at a 30 MHz bandwidth. 
Additionally, the internet data rate for FFT series does not 
exceed 6.7 MB/s, irrespective of the bandwidth. This analysis 
indicates that FFT series offer a balanced compromise, 
effectively managing both computational power and internet 
data rate requirements. This balance is crucial for optimizing 
the performance and feasibility of deploying the CESS 
architecture, particularly when considering the limitations of 
the sensing nodes' hardware and the need for efficient data 
transmission to the CDFS.  

In Fig. 3, we present the round-trip times (RTTs) of 
acknowledgment (ACK) packets for both the I/Q and FFT 

data formats, using a stacked plot to highlight differences 
across the various recorded bandwidths. This visualization 
method allows for a clearer understanding of how latency 
varies with each data format and bandwidth. The results 
indicate that, for both I/Q and FFT data formats, the latencies 
remain below 10 ms, which is within acceptable limits for near 
real-time processing requirements. However, there is a 
notable distinction in performance between the two formats. 
For the I/Q data format, the average RTT is significantly 
higher, reaching or exceeding 5 ms for bandwidths above 5 
MHz. This leads to cumulative delays that could impact the 
efficiency of the spectrum sensing process, especially in 
scenarios requiring rapid data analysis and decision-making. 
The FFT data format demonstrates more favorable latency 
characteristics. The average RTT values for FFT are below 2.5 
ms, although there are occasional spikes that reach up to 10 
ms towards the end of transmissions. These spikes, while 
noticeable, do not detract from the overall efficiency of using 
FFT data format for data transmission. Furthermore, it is 
evident that transmitting the same 30 seconds of recorded 
spectrum data in the I/Q format requires a significantly greater 
number of data packets compared to the FFT format. This 
difference underscores the increased efficiency and reduces 
the network load achievable with FFT data format. 

The comparative analysis of RTT and packet requirements 
solidifies the advantages of adopting the FFT data format for 
the CESS architecture. Not only does FFT reduce the 
computational and data transmission requirements on sensor 
nodes, but it also ensures lower latencies and fewer data 
packets are needed for transmission. These benefits 
collectively enhance the scalability and practicality of the 
CESS architecture, particularly for deployments leveraging 
sensor nodes with limited computational capabilities. 

Fig. 3. Round-Trip Times of the TCP ACK packages for the: (a) I/Q data format, (b) FFT data format  
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V. CONCLUSIONS 
In this paper, we propose, implement, and assess a Cloud-

enabled Spectrum Sensing architecture, evaluating its 
performance and the design implications for the sensing 
nodes. Our deployment utilizes a Cloud-based Virtual 
Machine hosted on the infrastructure of the Stefan cel Mare 
Cloud Computing Center to serve as the Cloud Data Fusion 
Center. At the sensing node level, we employed a Raspberry 
Pi micro-computer combined with a Software-Defined Radio, 
using the TCP protocol for data transmission in order to ensure 
data integrity. Two signal representation formats, namely I/Q 
and FFT were considered and evaluated in our analysis in 
terms of computational power demands, required internet data 
rate and latency. Our results show that using the FFT series 
signal representation format at the sensing node level presents 
several advantages over using raw I/Q data. Specifically, the 
FFT format significantly reduces network traffic and ensures 
lower latency, without substantially increasing computational 
demands across a wide spectrum of recorded radio 
bandwidths, obtaining an average latency below 2.5 ms, while 
only using 6.7 MB/s internet data rate and a computational 
power of 0.3 GFLOPS for a recorded radio signal bandwidth 
of 30 MHz.  

 This approach enhances the operational efficiency of the 
Cloud-Enabled Spectrum Sensing architectures, 
demonstrating its potential for scalable deployment in 
environments constrained by computational and network 
resources. The results discussed in this paper provide a 
foundational baseline for developing scalable, cost-effective 
cloud-based spectrum sensing architectures. This framework 
facilitates further growth and expansion of WSNs within the 
IoT ecosystem. 
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