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Abstract—The paper deals with a problem not approached 

in the literature: the achievement of a control system that 

ensures optimization in both steady state and dynamic 

operation. The problem refers to a drive system with a surface 

mounted permanent magnet synchronous machine. The aim is 

to minimize the power dissipated on the stator winding in 

steady state, respectively the energy dissipated in dynamic 

mode. The main difference that appears refers to the current 

limitation. A solution for an adequate control system is 

indicated. The results are validated by simulations.    

Keywords—steady state optimization, optimal control, drive 
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I. INTRODUCTION 

The optimization of the electrical drive systems usually 
refers to the minimization of energy losses both in steady 
state and in dynamic operation. The methods used in the two 
cases are somewhat similar, but also different in some 
aspects.  

The optimization refers, as a rule, to the minimization of 
Joule losses, which are predominant in all cases. The only 
losses that can still be reduced by controlling the machine are 
those in iron ones, but these are not taken into account 
because they are smaller. An additional justification for the 
steady state is that, in the case of analytical procedures 
(frequently used), the errors due to this neglect are of the 
same order of magnitude as those due to the not knowing the 
exact parameters of the machine. Moreover, the neglect is 
justified in dynamic operation, when the currents have high 
values.      

The present paper refers to the optimization of the drive 
systems with surface-mounted permanent magnets 
synchronous machines (SMPMSM). There are a large 
number of papers that deal with the optimization of the 
steady state for such electric machines, among which we 
mention [1], [2], [3], [4], [5], [6], [7]. Comprehensive 
syntheses for this problem can be found in [8], [9], [10]. 
Regarding the optimal control of dynamic operation of the 
indicated type systems, we can mention [11], [12], [13], [14], 
[15]. 

The paper approaches a situation when it is necessary to 
introduce a control that ensures both steady-state and 
dynamic operation, a problem rarely addressed in the 
literature (e.g. [16], but for the same limitation of currents in 
both operating modes). As will be seen, there are differences 
in the formulation of the constraints and the control system 
will have to distinguish between the two cases.  

In what follows, aspects related to the optimization of the 
steady state and the dynamic operation, a comparison 
between the two cases, simulations results and final 
conclusions are presented. 

II. STEADY STATE OPTIMIZATION 

A. General conditions 

Stator voltages equations in a d - q rotor reference frame 
are  

  (1) 

 

where R and L are the stator resistance and inductance, ω is 
the rotor speed, p is the pole pairs number. The above 
equations contain the d - q components of the instantaneous 
stator voltages and currents vectors u = [ud  uq]T, i = [id iq]T     
(T denotes the transposition). 

The electromagnetic torque developed by a SMPMSM is 

  (2) 

where Φ is the flux created by the permanent magnet in the 
synchronous reference frame.  

The equations (1) become in steady state: 

  (3) 

 

Two dual optimization problems can be formulated: 
minimization of electrical power losses and maximization of 
torque per current. The second problem has no significance if 
the speed is below the rated one, because in this situation 
only the iq component is different from zero and then the 
torque/current ratio is constant, according to (2). For speeds 
higher than the rated one, a flux-weakening operation is 
required, which can be achieved by limiting the current 
and/or voltage. If the electric machine operates at maximum 
current and at the torque imposed by the load, the problem of 
maximizing the torque/current ratio is meaningless. The 
problem makes sense if only the voltage limitation 
intervenes. Moreover, for similar reasons, as it will be seen, 
similar aspects intervene in the case of the problem of 
minimum power consumption. 

In the following, we will only deal with the problem of 
minimizing the dissipated power, which consist in 
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minimizing the function 

 222

qd ii)(f +== ii  (4) 

under the conditions of compliance with the equality 
restriction 
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which comes from (2) and with the inequality constraints 
related to current and voltage: 
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where iM  and uM are the maximal admissible values for 
current and voltage, respectively. 

Some additional special constrains may appear in certain 
applications, but they will not be addressed here. The last 
restriction can be formulated according to the currents id and 
iq replacing (3) in (7). The simple calculations lead to 
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Inequalities (6) and (8) represent surfaces bounded by 
circles in the id – iq plane, Fig.1.  

The circle defined by (6) has its centre in origin and 
constant radius. Inequality (8) corresponds to circles with 
centres in (-c1(ω), -c2(ω)) and radius r(ω). For very small ω, 
the centre of the circle approaches the origin and the radius 
tends towards the uM/R value (significantly higher than the 
rated current value). The radius of the circles decreases with 
the increase of ω, and the position of the centre changes 
according to ω on a curve located in the third quadrant. If the 
resistance R is neglected, the centre of the circle is in            
(-Φ/L, 0). 

The steady state optimization problem is formulated as 
follows: determine id and iq which minimize the function  
f(id, iq) given by (4), respecting constrains (5), (6) and (8). To 
solve the problem, one can use the Karush-Kuhn-Tucker 
method [17], as it is done in [3]. For this purpose, the 
synthetic Lagrange function is formulated: 

  

 

 

 

 

 

Fig. 1. id – iq restrictions 
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The necessary minimum condition is the cancellation of 
the gradient (∂L/∂i=0) of the function (10) with reference 
only to the active constraints: 
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where I is the set of active restrictions, for which we have  
μj>0. In the present case, there is one of the following four 
possibilities: I= Ø, I={1}, I={2}, I={1, 2}. 

Taking into account the forms of the functions f, h, g1 and 
g2, the condition (11) becomes 
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To these equations is added the equality restriction (5) 
and, as the case may be, the equations: 
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Next, we will discuss the four cases indicated above for 
active constraints. 

B. No current and voltage constraints (I=Ø, μ1=0, μ2=0) 

It follows from equations (5) and (12): 
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There is only component iq that depends on the load 
torque and can vary within the limits [0, iM]. Usually iM is the 
rated current iN and corresponds to the electric machine's 
rated load. In this situation, the speed that is established in 
steady state is the rated speed and is reached if the rated 
voltage is applied (usually chosen as the maximum voltage 
uM). It follows that the circle (8) that passes through the point 
(0, iM) corresponds to the rated speed and voltage. The limit 
speed obtained for iq= iM is called the base speed (ωb). It is 
often equal to the rated one or close to it. Above this speed, 
the flux-weakening operation mode is entered. 

C. Current active constraint (μ1>0, μ2=0) 

In this case, from (5) and (12) the currents id and iq result 
in the form (14), specifying that iq=iM. It also follows from 
(12) 

 Φλ−=µ+ p)(iM
4

3
1 1  (15) 

which indicates a linear dependence between the multipliers 
λ and μ1, respectively an equivalence of the two restrictions 
(the maximum torque corresponds to the maximum current). 

id 

iq 

iM 

-c1(ω) 

-c2(ω) 

r(ω) 
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D. Voltage active constraint (μ1=0, μ2>0) 

In this case, it follows from (5) and (8) 
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and using equations (12), the expressions of the multipliers λ 
and μ2 can be established. 

E. Current and voltage active constraint (μ1>0, μ2>0) 

The operating point corresponds to the intersection of the 
circles g1(i) and g2(i,ω)  given by (6) and (8), resulting 
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Using the equations of the restrictions (all of the equality 
type in this case), the expressions of the multipliers can be 
established. 

F. Remarks 

• The operation in the first two cases corresponds to 
what is called maximum torque per ampere (MTPA). 
The torque/ampere ratio is constant in this case, 
according to (2). 

• In the cases (D) and (E), the flux-weakening 
operation takes place, as an effect of component id. 
This occurs in the cases where it is desired to reach a 
speed higher than ωb. 

• The component iq has the value imposed by the load 
torque in steady state in all cases. The operation point 
is established on the circle (8), for imposed ω and iq. 
As such, the required value for the component id 
results from (6). The same speed can be achieved for 
the same torque and for a lower voltage. This 
operation can be achieved by increasing the id 
component (as absolute value), that is, a decrease of 
the flux compensates the voltage drop in order to 
maintain the speed. But the increase of id means that 
the minimum for current, respectively the minimum 
of losses, is no longer obtained. 

• At high speeds, the limit values iM and uM are reached 
(see point (E)). The operation takes place in a point 
on the circle (6) for iq imposed by the load. It is 
possible that a circle (8) corresponding to a speed 
lower than the desired one passes through this point. 
Obviously, increasing the speed can only be done in 
the case of sufficiently small load torques. 

• The speed can be increased as much as possible for 
very small load torques only if the machine 
parameters ensure the fulfillment of condition         

Φ/L>iM. Otherwise, the component id can be 
increased (in absolute value) only up to id=Φ/L. In 
this way, a different flux-weakening operation is 
obtained, in which the id component is limited. 

III. DYNAMIC OPTIMIZATION 

A. Unconstrained optimal control 

The optimal control problem for the considered drive 
system takes into account equations (1), where ud and uq are 
control variables, and id, iq and ω are state variables. A 
significant simplification can be obtained by considering the 
currents as control variables and speed as state variable. This 
approach is justified by the fact that it is possible to obtain a 
very fast variation of the currents, which thus satisfy the 
requirements imposed on control variables. Besides, in many 
cases, the control of the drive systems is realized by currents. 

The performance index for the problem of minimization 
of Joule losses is 

  +=
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The mechanical equilibrium equation is 

 J/)]t,(m)t,i(m[dt/)t(d qe ω−=ω  (20) 

where J is the inertia momentum and m is the load torque. It 
results from (20): 
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are the mean values of the electromagnetic and load torque, 
respectively. We will consider t0 = 0, a free final moment tf 
and a fixed final speed ωf. 

Relationship (21) shows that the problem can be solved 
only if the variation of the load torque is known on the 
optimization interval. The solution can be established if at 
least the form of the variation of the load torque is known 
and the magnitude of the load torque is estimated at the 
beginning of the interval. This condition will be considered 
fulfilled in the following. Because it interests the mean value 
of the load torque, it will be considered a certain variation on 
the optimization interval, but independent of speed. For the 
SMPMSM, the electromagnetic torque is given by (2). The 
operation will be considered only below the rated loading 
and speed. 

To establish the condition of optimality, the Hamiltonian 
[18] of the problem is formed 

 )mm(
J

)ii(H eqd −
λ

++= 22

2

1
 (23) 

where λ is the co-state variable. 
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 The minimum necessary conditions for (20) are: 
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It results from the last two relationships iq=constant and 
(21) becomes 

 
J

c
)(

t

J
f

f

λ
−=ω−ω

2

0  (25) 

and one obtains 
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The control variable results from (22.2): 
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where ε is the angular acceleration (constant on the 
optimization interval). 

Since id = 0 and iq is constant, the performance index (19) 
can be expressed as: 

 2

2
q

f
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t
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The transfer time results from (20): 
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Thus, the performance index is 
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The minimum necessary condition ∂Id/∂iq=0 leads to 

 m
*
q mic 2=  (31) 

Therefore, 

 m
*
e mm 2=  (32) 

that is, the optimal electromagnetic torque must be the 
double of the mean load torque. In other words, the dynamic 
accelerating torque must be equal with the load one: 
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In this case, the transfer time is 
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Calculating the second order derivative for (30), it is 
found to be positive, so that the sufficient minimum 
condition is satisfied. 

Similar results were obtained by authors for other electric 
machine types [19]. 

B. Problems with constraints 

• Current restriction can be imposed when it is possible to 
achieve dangerous current values. If during the acceleration 
period the average load torque has at most the value of the 
rated torque, then, according to (31), the current will have at 
most the double value of the rated current iN. Exceeding of 
the mentioned value of the mean load torque indicates a 
wrong choice of electric machine power and corrections 
must be made in this regard. Therefore, one introduce the 
restriction:   

 Nq ii 2≤  (35) 

The electric machine supports this kind of current 
increase during the short time of the transient period and, 
anyway, the energy dissipated during the acceleration period 
is minimal for the adopted optimal control. Considering 
those mentioned, the theoretical optimization calculations 
must not take into account the current limitation, because, 
normally, it must be fulfilled. 

Problems can arise in connection with the choice of the 
inverter, because it must ensure a current greater than iN. 
Instead, the electric machine power can be chosen lower and 
the investment expenses are balanced, remaining the 
advantage of lower operating expenses. 

 Anyway, the limiting of the current to its rated value can 
cause malfunctions. For example, the electric machine 
cannot start if the load torque is equal to mN. In general, if 
the load torque is close enough to mN, the acceleration takes 
a long time, due to too little dynamic accelerating torque. 
The solution in such cases is to adopt a higher power electric 
machine, or to accept, at least for the dynamic operation, a 
current greater than iN. 

• Time restrictions: It is necessary to introduce in some 
applications an inferior limit for the duration of the transient 
operation. But more frequently situations may appear in 
which this duration is superior limited. In fact, from (34), 
large values for tf result if the load torque is small (the 
reduced value of the dynamic accelerating torque determines 
a very low acceleration). As such, the value of tf must be 
limited, but it is more useful and convenient to impose an 
inferior limit for acceleration ε. As a quasi-optimal solution, 
the procedure described in point (A) can be used, requiring 
that ε be greater than a convenient value.  
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Fig. 2.  Structure of the optimal system 

IV. IMPLEMENTATION OF THE OPTIMAL SYSTEM AND 

SIMULATION RESULTS 

The general structure of a speed control of an electrical 
drive system that ensures the optimization of both the steady 
state and the dynamic operation is presented in Fig. 2.  

Comparative with a usual speed control system, some 
additional blocks must be introduced in such optimal system: 

• a saturation amplifier with variable saturation level (S);  

• an element that notices the operation in stationary or 
dynamic mode (SR) of the system; it can be based on the 
measurement of the speed error Δω =ω*(t)– ω(t) (ω* is the 
prescribed speed and ω(t) is the measured speed); if Δω is 0, 
the operation is in steady state mode and the decision block 
(DB) sets the current limitation to the iN value; if  Δω is not 
zero, the operation is in transient mode and the current is 
limited to the  2 mm/c value;  

• an observer for the torque (OBS), e.g. [20]. 

The mentioned elements are attached to a cascade control 
system, according to Fig.2, where C1 and C2 are PI type 
controllers, and P1, P2 and P3 are fixed parts of the system: 
inverter, electric machine, driven working machine. 
According to the mentioned functions, the decision block DB 
establishes the level of the signal from the output of the 
amplifier with saturation S. In the last part of the transient 
process, when Δω has low values, the block S comes out of 
saturation, operating with an adequate proportionality factor 
and the whole assembly works as a usual cascade control 
system.  

In order to validate the presented theoretical 
considerations some numerical simulations were performed. 
The following parameters (of the 8MSA4M SMPMSM type) 
were considered: P=1930W, ωN =4500rpm, m=4Nm,   
iN=4.4A, R=1.275Ω, L=7.25mH, Φ=0.22Wb, J=0.034 kgm2, 
p=3. 

Some results from the performed tests are presented in 
Fig.3, Fig.4 and Fig.5. In all figures are indicated: reference 
and motor speed, estimated load torque and electromagnetic 
one, component iq of the stator current and dissipated energy, 
respectively. 

Fig.3 and Fig,4 are for a load torque m=0.3·mN. In the 
first case, me=mN and in the second case, me=2·m (optimal 
control). The losses energy in the second case is 83% from 
the losses energy in the non optimal control. 

Fig.5 refers to an optimal control for m=0.75 mN. The 
dissipated energy increases by 2.5 times comparatively with 
the case presented in Fig.4 (similar with increase of the load 
torque). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Transient operation: iM=iN, m=0.3mN, EJ=52.6J 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Transient operation: iM=0.6iN, m=0.3mN, EJ=43.7J 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Transient operation: iM=1.5 iN, m=0.75mN, EJ=111.8J 
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V. CONCLUSIONS 

- The optimization of a drive system with surface 
mounted permanent magnet synchronous machine is 
presented. The optimal system ensures the minimization of 
the dissipated power / energy.  

- The solutions for steady state and dynamic optimization 
are indicated.  

- The structure that ensures both steady state and 
dynamic optimization is indicated. 

- Simulation results are presented. 

- Further development of the presented approach refers to 
the dynamic optimization for the flux-weakening operation. 
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