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Abstract— As more and more deep learning (DL) solutions are 

employed in the healthcare domain using the Machine Learning 

as a Service (MLaaS) paradigm, concerns regarding personal 

data privacy have been raised. In this context, especially in 

medical imaging, the demand for privacy-preserving techniques, 

that allow for DL model development, has recently increased 

significantly. Herein, we propose a medical image obfuscation 

algorithm based on pixel intensity shuffling and non-bijective 

functions. The proposed algorithm is evaluated on a medical use 

case based on coronary angiographic images. Multiple 

convolutional neural networks are trained to measure the utility 

of the obfuscated images. An attack configuration based on 

artificial intelligence (AI) is evaluated to validate the level of 

privacy. The classification performance on the obfuscated images 

is satisfactory, while the computational time is not affected 

significantly. Visual and metrics-based analyses show that the 

data is protected from human perception and from AI-based 

image reconstruction approaches. 

Keywords—image obfuscation, non-bijective functions, deep 
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I.  INTRODUCTION 

Deep learning (DL) based solutions have proved their 
utility in multiple areas in the past years. A significant 
accomplishment is the use of DL applications in healthcare, 
where such approaches have shown remarkable results in 
assisting clinicians in diagnosis, treatment, and prevention [1]. 
Conversely, significant data amounts are required to ensure that 
DL models achieve high accuracy. Health data typically 
contains sensitive and personal patient information, hence, the 
sharing of data outside the clinical center is conditioned by 
performing a proper anonymization [2]. To overcome the 
concerns regarding data confidentiality, privacy-preserving 
techniques that allow for neural network training have been 
developed (homomorphic encryption, secure multiparty 
computation, differential privacy). Although publications 
demonstrate the possibility of integrating homomorphic 
encryption (HE) in artificial intelligence methods [3-5], most 
proposed schemes have limitations that hinder their real-world 
utility. For instance, the increasing noise affects the number of 
correct consecutive operations in the BFV scheme [6], while 
other solutions allow only for addition and multiplication on 

small integers [7], [8]. Moreover, their mathematical 
complexity influences also the computational time. These 
drawbacks make homomorphic encryption unsuitable for 
DL‑based medical applications, where both time and accuracy 
are crucial. Furthermore, medical data are acquired and stored 
in a large variety of formats. Besides tabular or time-series data 
(e.g., EKG), that are easier to process when privacy-preserving 
techniques are employed, more complex acquisitions are 
represented by medical images. A single image sample 
contains significantly more information than tabular or time 
series data. Thus, applying DL methods on images protected 
through HE is infeasible, as it implies a more substantial 
computational overhead. 

Another approach is to hide the image content through 
obfuscation while allowing for DL model training, with no 
computational overhead. McPherson et al. [9] demonstrated 
that DL can still achieve high performance in face, number, or 
object recognition, even if the images are obfuscated. The 
authors showed that “mosaicing” and blurring could transform 
faces and digits and make them unrecognizable by the human 
eye, but an artificial intelligence standard model can still 
extract useful information from the obfuscated images. The 
approaches proposed in [10] assume that only some of the 
images from the dataset contain sensitive information, and 
these will be obfuscated. There is though the risk of affecting 
model accuracy if too many samples need to be secured. To 
ensure protection against attacks based on statistical methods, 
the authors have proposed dataset augmentation with fake 
synthetic generated samples that do not influence the model 
performance. A promising technique is presented in [11], 
where images are obfuscated by mixing the pixels of two 
images. Multiple obfuscation methods were combined with the 
proposed technique to enhance security, and the experiments 
indicated that the images are protected both from human 
perception and artificial recognition systems. A different 
approach was considered in [12] and [13], where generative 
models were used to create visually pleasing images similar to 
the original ones in terms of general shape but different 
concerning the details. According to the authors of [13], this 
technique could be helpful in the context of training a model 
for face detection while ensuring privacy against face 
recognition. This approach would be challenging to adapt for 

132



 

 

medical imaging applications, where the details are essential 
for classification, but the entire content needs to be protected. 

The application scenario is formulated in the context of 
developing AI algorithms that can automatically analyze 
images. As these solutions may not be owned or deployed by 
the entity that uses them, confidentiality concerns dictate the 
demand for privacy preserving techniques that allow for AI 
model training on secure data. Although the images are altered 
through obfuscation, this does not affect the physicians' 
analyses since they can access the original images from inside 
the secure environment of the hospital. The obfuscation 
method aims to protect the images while they are analyzed by 
artificial intelligence models deployed by an external party. 

In this paper we present an image obfuscation method 
based on pixel intensity shuffling, designed for meeting the 
following requirements: (i) hiding the content of an image from 
the human eye, (ii) making AI-based image reconstruction 
difficult, and (iii) allowing for model training which leads to 
high accuracy. The rest of the manuscript is structured as 
follows. Section II describes the methods and materials used in 
our experiments: obfuscation algorithm, datasets, workflows, 
and network architectures. The experiments conducted from 
the clinical user and the threat actor perspectives, along with 
the corresponding results, are presented in Section III. Section 
IV highlights the advantages of the obfuscation techniques for 
image-based DL analyses, concluding our work. 

II. METHODS 

A. Image obfuscation algorithm 

The first step of the proposed obfuscation algorithm 
consists of randomly shuffling the pixel intensities. For this, 
every potential pixel intensity (integer values in the range [0, 
255]) is paired with a value from the same interval. Because 
each domain member has only one corresponding element in 
the codomain, this correlation represents a bijective function. 
Although the substitutions are arbitrarily chosen, which makes 
images unrecognizable, this method is vulnerable to DL-based 
or reverse-engineering attacks. Because third parties may have 
a black-box version of the obfuscation technique, new images 
may be obfuscated with the same tool, and statistical analysis 
could be able to indicate that a one-to-one mapping was 
utilized. Inverting this mapping would allow a possible threat 
actor to recover the original frames with zero loss. Another 
attack technique could rely on a deep learning model to recover 
the obfuscated images. Because such methods are considered 
powerful enough to learn a bijective function, we presume that 
this is the approach chosen by the attacker in the experiments 
that will follow. To prevent this type of attack, the obfuscation 
algorithm's second step is to change the mapping such that the 
injectivity attribute is lost. Consequently, several domain 
elements will be associated with the same codomain element. 
A modulo operation is used on each value of the bijective map 
to accomplish this result. The two steps of the proposed 
algorithm are depicted in Fig. 1. An important observation is 
that, even if the use of different non-bijective functions for 
distinct images would improve the security, such obfuscated 
frames could not be successfully employed in DL applications.  

 

Fig. 1. Schematic representation of the obfuscation algorithm. 

To train a classifier, for example, all the images (used either 
for training or inference) should be part of the same 
distribution, so the same bijective function must be applied. 
The structural similarity metric (SSIM) and peak signal-
to-noise ratio (PSNR) are computed between original and 
obfuscated images to evaluate the security against human eye 
recognition. Since these similarity metrics agree with the 
human perception, they can be regarded as obfuscation level 
measures. 

B. Clinical user perspective and use case description 

A first perspective considered when analyzing the usage 
scenario of an obfuscation technique is that of the clinical user 
(e.g., hospital, patient) who regards data as sensitive and 
private. However, to reduce the diagnosis time in certain use 
cases, there is a need for developing a DL based model that 
could solve an easy but tedious task before a doctor performs 
the actual evaluation. An exemplary task is the classification of 
the view of an X-ray coronary angiography. Considering that 
the hospital does not have the hardware resources and 
especially the expertise to develop and deploy a deep learning 
classification model, the solution is to use the services of a 
third party, which may have an impact on data confidentiality. 
This external party is in this case a Machine Learning as a 
Service (MLaaS) provider that can train a DL model with the 
data provided by the clinical user, and then make it accessible 
as a service in the cloud for inference. The workflow is as 
follows: patients' consent that their data will be used in model 
training, the hospital collects data and creates a dataset; this 
dataset is sent to an MLaaS provider that trains a model; the 
hospital uses this model for remote inference by sending a 
sample to the MLaaS platform and receiving the classification 
result. Every angiographic frame used for training or inference 
is obfuscated to preserve the privacy of the data outside the 
hospital environment. 

In our experiments, we use an in-house dataset of frames 
depicting either the right coronary artery (RCA) or the left 
coronary artery (LCA). It contains 3280 coronary 
angiographies and is balanced between the two classes. A 
subset of 680 images is used for validation, and another subset 
of 702 images is kept for evaluation purposes. The remaining 
frames are augmented (e.g., through shifting, zooming, 
rotation), resulting in 9980 images used in training. The size of 
these frames is 512x512 pixels, but experiments with different 

133



 

 

input shapes have shown that 128x128 pixels is a setting which 
ensures satisfactory classification performance while requiring 
less computational time. Min-max scaling is applied to 
normalize the pixel values in the [0, 1] interval. The 
architecture of the classifier trained to distinguish between 
RCA and LCA in angiographic frames consists of four 
convolutional layers followed by two fully connected layers. 
The first and the third convolutional layers use kernels with a 
size of 5x5 for an increased receptive field, while the other two 
convolutional layers use 3x3 filters. Average-pooling is used 
for down-sampling, and the SELU activation function is 
chosen. The activation function on the final layer is the sigmoid 
function, and binary cross-entropy is employed as a loss 
function. Training is performed for 30 epochs, with a batch size 
of 64 and a learning rate equal to 0.001. The classification 
accuracy is used as evaluation metric. 

C. Threat actor perspective 

In the following, we also analyze the perspective of an 
external party (e.g., the MLaaS provider, an interceptor) 
willing to gain access to the non-obfuscated version of the data 
sent by the hospital for inference. Since the obfuscation 
algorithm is publicly released as a black-box tool, we also 
assume that the threat actor can use this tool to obfuscate any 
dataset. Moreover, because the data source is known, the 
attacker can estimate that the dataset consists of medical 
images, but does not know their specific type (coronary 
angiographies in our case). The workflow of an entity willing 
to gain unauthorized access to the data sent by the hospital has 
the following steps:  

• obfuscating a dataset of medical images using the same 
obfuscation tool as the hospital 

• training a deep learning model to reconstruct the 
original frames from the obfuscated images 

• intercept obfuscated images sent by the hospital and 
reconstruct the original ones using the previously 
trained model. 

In the following experiments, we simulate an attack based 
on the U-net architecture proposed for the first time in [14]. 
The objective is to develop a model that takes as input an 
obfuscated image and outputs an image ideally identical, or at 
least very similar, with the original one. The architecture 
consists of an encoder and a decoder. The encoder contains two 
convolution operations (a convolution block) that preserve the 
size of the image, followed by a max-pooling operation that 
down-samples the activation map. On this map, another 
convolution block is applied. Then, as a part of the decoder, a 
transpose convolution is performed to up-sample the activation 
map, and the result is concatenated with specific intermediate 
values from the encoder. For every pixel of the obfuscated 
image, a corresponding pixel in the reconstructed image is 
predicted. As it is presumed that the attacker knows that the 
target data consists of medical images but cannot precisely 
determine what those images contain, the Medical MNIST 
dataset, publicly available [15], is used to train the 
reconstruction model. It contains six classes of X-ray images, 
each of them totaling around 7,000 samples. A subset of 70% 
is used in training, and the rest is kept for validation and 

testing. Image size is 64x64 pixels, allowing for a larger batch 
size (128). The model is trained for 20 epochs with a learning 
rate of 0.001. SSIM and PSNR are computed between original 
and reconstructed images to evaluate image similarity. The 
obfuscation algorithm is implemented in Python, and all deep 
learning models are developed using the PyTorch [16] 
framework.  

III. EXPERIMENTS AND RESULTS 

A. Classification experiments 

The first set of experiments consists of training multiple 
classifiers on original and obfuscated data for different values 
of the parameter N. The results are synthesized in Table I. 
Fig. 2 represents a visual comparison between the original 
frame and the four different levels of obfuscation. 

Although the model performs well on the original data, the 
obfuscation step (in the bijective form, when N=256) decreases 
the accuracy for the test set by more than 10%. However, as the 
dataset is balanced and the two classes are predicted equally, 
this performance may still be considered satisfactory. The 
subsequent three experiments show that, up to a certain point, 
reducing the parameter N, and, thus, applying a non-bijective 
obfuscation does not have a significant influence on the 
classification performance. For this specific use case, the 
threshold seems to be around N=50: the accuracy drops more 
when a smaller value of N is used. Although the use case 
application is represented by a binary classification which is 
not complex, the experiments demonstrate that the non-
bijective-based obfuscation preserves enough information for 
an AI model to learn and achieve decent results. The intent is 
not to present a state-of-the-art AI-based solution for clinical 
applications but to determine how an AI model would perform 
when the training images are secured through different levels 
of obfuscation. 

The corresponding metrics that numerically describe the 
similarity between the original and obfuscated images 
presented in Fig. 2 are also displayed in Table I. All SSIM 
values are under 0.1, and the PSNR is below 30 dB for all four 
cases, indicating almost no structural similarity with respect to 
the original angiographic image. 

B. Reconstruction experiments 

Two reconstruction experiments are considered to measure 
the impact of non-injectivity in the obfuscation method. In the 
first one, the images are obfuscated through a bijective 
function. Fig. 3 displays three samples along with the 
obfuscated and the reconstructed versions. A similar 
comparison, but for a non-bijective obfuscation, is depicted in 
Fig. 4.  

 

Fig. 2. Comparison between the original frame and four levels of 

obfuscation. 
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Fig. 3.  Comparison between original (left), bijective obfuscated (middle) 

and reconstructed images (right). 

Even in the bijective case, the reconstruction is 
significantly different from the target image. However, the 
curvatures of the aortic vessels are still visible both in the 
obfuscated and the reconstructed images. Conversely, in the 
non-bijective case, any information suggesting what is depicted 
in the medical frames is hidden. The similarity metrics confirm 
the difference between these approaches formulated after the 
visual evaluation. Table II includes the average SSIM and 
PSNR values computed over the entire testing angiographic 
subset.  

IV. CONCLUSIONS 

A related work that is focused on protecting medical data is 
presented in [17]. A client-server system is proposed in which 
the client protects the patient's identity by deforming the input 
image using an end-to-end adversarial system. The brain MRI 
is converted into a proxy image by the client and sent to the 
server for segmentation. The client receives the distorted 
segmentation mask and returns it to its original state. This 
methodology differs from our method in terms of initial needs, 
as it is meant to allow for an accurate reconstruction of the 
processed image. The attack vector consists of matching an 
encoded image or segmentation to an existing database, the re-
identification accuracy being evaluated using the mean average 
precision and the F1-score. 

TABLE I.  CLASSIFICATION PERFORMANCE AND SIMILARITY METRICS 

FOR DIFFERENT LEVELS OF OBFUSCATION 

Data description 
Test 

accuracy  
SSIM PSNR [dB] 

Original 94.73 % - - 

Obfuscated 
(bijective; N=256) 

83.48 % 0.0109 9.780 

Obfuscated 

(non-bijective; N=150) 
84.47 % 0.0368 11.1784 

Obfuscated 

(non-bijective; N=50) 
84.05 % 0.0940 8.230 

Obfuscated 
(non-bijective; N=45) 

79.77 % 0.0147 8.129 

 

Fig. 4. Comparison between original (left), non-bijective obfuscated (middle) 

and reconstructed images (right). 

Compared to other privacy-preserving techniques that 
increase the complexity of data representation, image 
obfuscation has the advantage of conserving the shape and the 
size of input data. Thus, the computational time is not 
significantly influenced, the only overhead being introduced by 
the obfuscation process itself, which is negligible. Because the 
data format is also preserved (the output of the obfuscation 
algorithm is still an image), applying an already developed 
classification model is possible without any change in the 
implementation. The non-bijective function proposed as 
obfuscation technique transforms images, making them 
unrecognizable by the human eye, and impossible to 
reconstruct with a DL model. Although using obfuscated 
images as input to the classifier implies a trade-off between 
accuracy and privacy, the method can successfully hide 
sensitive information while allowing for DL-based analyses. 

TABLE II.  AVERAGED SIMILARITY METRICS BETWEEN THE ORIGINAL 

FRAMES AND THE RECONSTRUCTED IMAGES         

Data description 
Average 

SSIM  

Average 

PSNR [dB] 

Obfuscated 

(bijective; N=256) 
0.676 18.11 

Obfuscated 

(non-bijective; N=50) 
0.608 12.45 
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