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Abstract— In the last decade we observed a great demand for 

wireless sensor applications as the connectivity of objects related 

to the Internet of Things concept increased. The growing number 

of wireless sensors leads to more spectrum demand and 

eventually to collisions due to overcrowding, causing a decrease 

in their performance level. Thus, to avoid collisions, detailed 

knowledge of the radio spectrum is required such as the degree of 

spectrum occupancy and the radio modulations used. This paper 

presents an analysis of the impact of different radio signal 

representations (I/Q coordinates, polar coordinates, and Fast 

Fourier Transform) on the performance level of machine 

learning algorithms in spectrum sensing classification. Our 

results shown that machine learning algorithms achieve a higher 

classification accuracy when the FFT representation of the radio 

signal is used, with a classification accuracy of 98.6%. When 

using the time series, the I/Q representation of the radio signal 

obtained an accuracy of 68.6% on the test dataset meanwhile the 

polar coordinates achieved an accuracy of 90%, respectively. 

Keywords—Spectrum sensing, Machine Learning, IoT, 

Modulation Classification, Fast Fourier Transform. 

I.  INTRODUCTION  

The last decade has been marked by the evolution of IoT 
(Internet of Things) applications, mainly due to the rapid 
development of new wireless technologies. The vast majority 
of wireless communication protocols used in IoT applications 
operate in the unlicensed SRD radio spectrum (868 MHz) and 
ISM 2.4 GHz (e.g., LoRa [1], Sigfox [2]), as these frequency 
communication bands can be used by any device that respects 
local regulation rules. However, there are also IoT wireless 
communication protocols operating in the licensed spectrum 
that use the already deployed infrastructure to ensure a fast 
expansion of IoT services (e.g., NB-IoT [3] which uses the 
cellular communications infrastructure). The fast expansion of 
IoT services in both the unlicensed and licensed radio spectrum 
brings along a large number of IoT devices simultaneously 
connected. According to [4] there are currently 11.570 million 
IoT devices connected worldwide, and their number is 
expected to be at least double by the end of the decade. As the 
number of IoT devices is growing, the quality of service is 
significantly decreasing, due to radio spectrum overcrowding, 
data packet collisions, and problems regarding the coexistence 
of multiple wireless protocols. 

Taking this into account it is mandatory to implement, 
develop and test spectrum sensing (SS) techniques that have 
the ability to solve the problems associated with the large-scale 
high-density wireless sensor networks, increasing the 
associated level of performance.  

This paper is structured as follows: Section 1 presents an 
overview of SS and the implications of machine learning (ML) 
in SS techniques, Section 2 presents the workflow of the 
dataset creation process, as well as the main contribution of this 
paper which is represented by the evaluation of the ML 
algorithms performance when using different representations of 
radio signals: I/Q, Amplitude/Phase (A/P) and FFT as input 
data for the ML algorithms. Section 3 summarizes the results 
and the conclusions of this study. 

II. SPECTRUM SENSING AND MACHINE LEARNING 

A. Spectrum Sensing 

SS is the main component of intelligent radio systems, also 
known as cognitive radio [5]. By sensing the radio spectrum, 
we can obtain valuable information regarding the occupancy 
level of the radio channels, the wireless communication 
protocol used as well as patterns regarding the activity and 
communication frequency of the wireless sensor network 
(WSN) on the communication channel. This information 
makes radio devices self-aware of the surrounding radio 
spectrum behavior and allows the WSN to coexist. 

Current approaches to the problems associated with the 
large-scale high-density WSNs involve the use of energy 
detection methods [6] along with signal processing and 
artificial intelligence (AI) techniques [7] to detect unused 
frequency channels within the radio spectrum that can be used 
for communication, thus enhancing the performance of the 
wireless network. However, in order to gain a detailed 
knowledge of the radio spectrum, the detection of unused 
communication channels is considered to be insufficient. For 
this reason, in addition to the detection of unused 
communication channels, it is mandatory for us to detect and 
classify the radio modulation schemes associated with the 
communication protocols found within a wireless network. 
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Practical implementations of SS techniques firstly involve 
the use of software defined radio (SDR) devices [8] for radio 
signal capturing [9]. The captured signals are then preprocessed 
and prepared to be passed through signal classification 
algorithms, the main tools used in signal classification being 
machine learning (ML) [10] and deep learning (DL) [11].  

B. Machine Learning and Spectrum Sensing 

ML techniques have been successfully assessed and 
implemented in SS applications for transmission detection [12], 
radio modulation recognition [13], and anomaly detection [14]. 
An ML algorithm learns how to perform a certain task related 
to a classification problem, based on a large dataset composed 
of training examples by detecting patterns in the data. The 
datasets used in SS can consist of parameters and features of 
the communication signal to be analyzed like I/Q samples, A/P 
samples, or FFT samples. Such a dataset was released by the 
DeepSig company [15] and is related to paper [11]. The dataset 
includes twenty-four different modulations (digital and analog) 
both from over-the-air radio signal captures and synthetically 
generated using SDR platforms. Each modulation has 4,096 
instances at 26 different signal-to-noise (SNR) values ranging 
between -20 and +30 resulting in 106,496 instances for every 
modulation type. Each signal instance is composed of 1,024 
samples consisting of I/Q value pairs. A detailed analysis of the 
dataset was presented in [16]. The dataset is encoded in the 
Hierarchical Data Format version 5 (HDF5) which is split into 
three groups X, Y, and Z. The X group is a three-dimensional 
space (2,555,904x1,024x2) containing the I/Q values of the 
signals, Y is a two-dimensional space (2,555,904x24) 
containing the modulation type indicator and Z contains the 
SNR value for each instance [16]. The dataset classes are 
stored in a separate file that is related to the Y group in the 
dataset.  

Another approach in generating a dataset was described in 
[17]. This dataset introduces along with the radio signal 
samples additional parameters like base signal period, carrier 
offset, excess bandwidth, up sample factor, down sample 

factor, in-band SNR, and noise spectral density. In contrast to 
the DeepSig dataset, this one is smaller in size, with only 
112,000 signal instances and 8 different radio modulation 
classes. Each signal instance is saved into a binary file 
containing a series of synthetically generated I/Q samples. The 
process of generating and validating a training dataset is one of 
the main challenges of the SS problem, as a synthetic dataset 
can’t fully reproduce signal propagation effects (e.g., multipath 
fading). Taking this into account it is mandatory for the 
training dataset to contain training examples from over-the-air 
captures. The main purpose of this paper is to evaluate the 
impact of radio signal representation on the performance of 
ML algorithms in SS, as to our current knowledge such study 
hasn’t been yet conducted. 

III. SPECTRUM SENSING TECHNIQUES 

A. Preprocessing 

For our study, we chose the RadioML 2018.01A by 
DeepSig as a base dataset. Fig.1 shows the workflow of our 
study. Firstly, since the DeepSig dataset is large in size (24 
radio modulations, 2,555,904 signal instances), we selected 
three radio modulations that are the closest related to IoT: 
16QAM (used in 802.11a, and LTE-M communications), 
BPSK (used in Sigfox communications), QPSK (used in NB-
IoT communications). As described before, the DeepSig 
dataset is encoded in an HDF5 format, which creates a problem 
that is related to the further processing of the dataset. Thus, in 
order to use this dataset, the data had to be extracted and 
preprocessed using HDF5 custom tools. Since the labels of the 
samples are described in a different file, further measures must 
be considered to ensure the synchronization of the extracted 
samples and, determine the corresponding positions in the 
dataset for all three modulations according to the additional 
dataset information provided by DeepSig and the dataset 
analysis presented in [16]. After determining the correct 
positions, we extracted 4,096 radio signal I/Q instances at 16 
different SNR values ranging from 0 to 30 dB, for each one of 
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Figure 1. Study workflow 
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the three modulations, resulting in a first dataset consisting of 
196,608 samples. Each sample consists of 1,024 pairs of I/Q 
coordinates arranged alternately. I/Q coordinates are the 
Cartesian representation of a signal’s amplitude and phase. 
They are also known as the raw and unprocessed form of a 
radio signal, mainly because they can be retrieved directly from 
the output of a SDR receiver. Using the I/Q coordinates as 
input data for the tested ML classification algorithms would 
result in a drastic reduction of the complexity of a radio device 
with SS capabilities, as signals do not require any post-
reception processing. Thus, the raw signals are applied to the 
AI algorithms. For the second dataset, we used the 
representation of the signal instances in polar coordinates 
(A/P). Both the amplitude and the phase of the signals were 
obtained by processing the I/Q pairs from the first dataset 
accordingly to the formulas presented in Fig. 1. The resulting 
dataset is composed of 196,608 radio signal instances each one 
represented by 1,024 A/P pairs. The third analyzed dataset was 
obtained by applying the FFT transformation on the amplitude 
time series of each signal instance, thus shifting the signals 
from the time domain to the frequency domain. Each dataset 
aims to reveal certain patterns in the signals to separate the 
radio modulation techniques and detect them with high 
accuracy. 

B. AI Design and Development 

The three resulting datasets were split into three parts: 
150,423 samples were used for training; 16,713 samples were 
used for validation (10-fold cross-validation, approximative 10 
%) and 29,472 samples were reserved for testing 
(approximative 15%). The datasets were then passed through 
the 31 ML algorithms available in Matlab [18] from which 
only three were selected (one for each dataset) based on the 
analysis of the resulting performance metrics: scatterplot of the 
analyzed features, confusion matrix which summarizes the 
classification results, ROC (Receiver Operating Characteristic) 
curve which measures the performance of the ML algorithm at 
different classification thresholds and AUC (Area Under the 
Curve). The I/Q dataset achieved a maximum accuracy of 
68.4% on the validation dataset and 68.6% on the test dataset, 

using the Ensemble Bagged Trees algorithm. The A/P dataset 
showed a significant improvement in performance with an 
89.6% and 90% accuracy on the validation dataset, respectively 
on the test dataset, using the Quadratic Discriminant algorithm. 
Further improvements have been achieved using the FFT 
dataset, with an accuracy of 98.6% on both the validation and 
test dataset, using the Quadratic SVM algorithm. 

In Fig. 2 we can see a scatterplot of the FFT dataset for two 
distinctive features related to the amplitude of the signal at two 
different frequencies. From the scatterplot, we can see that the 
three different radio modulations are easily separable. Fig. 3 
presents the confusion matrix and the ROC curve of the 
Quadratic SVM algorithm. The confusion matrix shows that 
the algorithm has a relatively low level of performance when 
distinguishing between the 16QAM and the QPSK 
modulations, as it misclassified 174 of the 16QAM signal 
instances as QPSK and 192 QPSK signal instances as 16QAM. 
From the ROC curve graph, we can see that the corresponding 
AUC is about 0.98. From the obtained results our study shows 
that ML algorithms perform better on frequency-series datasets 
than on time-series datasets when it comes to radio modulation 
classification problems. The best performance was obtained by 
the Quadratic SVM classification algorithm with an accuracy 
of 98.6% when classifying 16QAM, BPSK, and QPSK 
modulations. The sensitivity and specificity for each 
modulation class are presented in Table 1. 

 

 

Figure 3. Quadratic SVM algorithm on FFT test dataset a) Confusion 
Matrix b) ROC curve for the QPSK modulation. 

 

Figure 2. FFT dataset scatterplot 
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TABLE 1 SENSITIVITY AND SPECIFICITY PARAMETERS 

 16QAM BPSK QPSK 

Sensitivity 98.2% 99.93% 98.03% 

Specificity 99.01% 99.98% 99.08% 

IV. CONCLUSIONS 

The recent evolution in both wireless technologies and IoT 
applications has led to an increase of wireless devices 
simultaneously connected, the radio spectrum resources being 
in high demand both in the licensed and unlicensed frequency 
band. SS techniques can help overcome these issues by giving 
both the network operators and the radio technology developers 
valuable information about the spectrum usage patterns, the 
radio modulations used in certain frequency bands, or the 
presence of anomalies within the radio spectrum. As 
modulation recognition represents a signal processing and a 
pattern recognition problem, machine learning approaches can 
be successfully integrated in SS techniques. 

In this paper, we presented an analysis of the ML 
algorithms performance applied in radio modulation 
classification: 16QAM, BPSK, and QPSK. Different datasets 
consisting of different representations of the modulated radio 
signals (I/Q, A/P, and FFT) were used and evaluated using the 
developed AI approach. The results were ranked and evaluated 
by comparing the classification accuracies (validation and 
testing), confusion matrices, and ROC curves for each 
classification algorithm we tested. 

The I/Q dataset achieved a maximum accuracy of 68.4% on 
the validation dataset and 68.6% on the test dataset using the 
Ensemble: Bagged Trees classification algorithm. The A/P 
dataset achieved an accuracy of 89.6% on the validation dataset 
and 90% on the test dataset using the Quadratic discriminant 
classification algorithm. The FFT dataset showed the highest 
performance with an accuracy of 98.6% for both validation and 
testing using the Quadratic SVM algorithm. From the obtained 
results, we concluded that machine learning algorithms achieve 
higher classification accuracy on frequency-series datasets 
rather than on time-series datasets. Taking this into account we 
believe that ML techniques for SS require further 
investigations, by gradually increasing the number and 
complexity of the modulation used as classes as well as testing 
and improving the robustness of ML algorithms to radio signal 
parameters variation.  
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