
16th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 26-28, 2022

978-1-6654-8162-5/22/$31.00 ©2022 IEEE

Improving ModBus Extension performance using
PRU unit from Sitara AM335x

Cornel Ventuneac, Vasile Gheorghita Gaitan, Catalin Lupu
Faculty of Electrical Engineering and Computer Science

Stefan cel Mare University
Suceava, Romania

corventu@yahoo.com, vgaigtan@usm.ro, lupucata@yahoo.com

Abstract— Local industrial networks represent a model with

only three levels physical, data link, and application for use in the

domain of the industrial processes using computing elements

with low resources of type microcontroller. Modbus is a simple

and easy to implement protocol but partially defined from the

point of view of devices determinism and functionality described

in the network. Modbus Extension completes the Modbus by

defining some Modus compatible messages of an acquisition cycle

and a device description mode. To implement the acquisition

cycle the best possible implementation in using a communication

channel was pursued, in conditions that the serial communication

speeds of modern microcontrollers have reached up to 27Mb/s.

At this speed, any over-control given by real-time operating

systems or interrupt handling routines creates significant times in

the structure of an acquisition cycle. The paper presents an

implementation solution using the PRUs from Sitara AM335x,

which at a speed of 12 Mb/s, a 75.53% percentage of channel

usage for payload data was obtained.

Keywords— Local industrial networks; ModbusE; Acquisition

cycle; PRU;

I. INTRODUCTION

The appearance and use of local industrial networks have
resulted in the development of automation in industrial
processes. Local Industrial Networks (LINW) provide physical
and logical support for the integration of various sensors and
transducers in IoT (Internet of Things). Local industrial
networks include sensor and actuator networks, networks that
connect the sensors with the execution elements (AS-I,
Modbus RTU, CANOpen), device-level networks (Modbus,
Interbus-S, Profibus, CANOpen), and networks at the control
level that connects PCs, PLCs, automation units. Local
industrial networks can be oriented to domains or applications
so they can be used in cars, smart homes, motion control, the
military, aviation, or in domains where reliability restrictions
are imposed. Due to a large number of specifications and
communications protocols, the efforts are directed toward
standardization and reducing the big number of standards. The
progress of industrial Ethernet will affect the development of
local industrial networks. Of course, that industrial Ethernet
will not make the local industrial networks on the lower levels
completely to be outdated. Not all communication protocols
have fully defined specifications, as a result, problems may

occur with temporary coherence, description of network
devices, MAC (Medium Access Control) schemes.

The Modbus protocol is an example of a communication
protocol that does not have fully defined specifications. The
Modbus protocol was created by Modicon in 1979 for data
communication using a serial line. The Modbus protocol is
positioned on level 1, level 2, and level 7 of the OSI stack. Our
days the Modbus protocol is unique, very appreciated, and used
protocols between industrial devices. There are several ways to
implement the Modbus protocol, namely [1]: RTU mode -
asynchronous serial transmission (RS232, RS422, RS485);
ASCII mode - asynchronous serial transmission; MODBUS
PLUS mode; TCP/IP mode. The Modbus RTU protocol is used
at the devices and sensors level and the Modbus TCP/IP it is
used at the application level.

The main features of the Modbus communication protocol
are [2]: easy to implement; small footprint; scalable in
complexity; easy to manage and improve; free specifications; is
an open protocol; cheap to implement; is a standardized
protocol. Starting from the Modbus communication protocol,
an extension has been proposed that improves the Modbus
RTU protocol. This extension is called Modbus Extension
(ModbusE) and addresses level 2 (data link level) of the OSI
model. According to the ModbusE protocol, a master station
called BSG (Base Station Gateway) is required to introduce the
time variable. It will be used further term client instead of the
master term and the term server instead of the slave term. This
BSG station will allow access to the local industrial network
using the internet [2]. At the level of this BSG station, the
acquisition cycle will be implemented, thus being introduced
the time variable. In paper [3] was briefly defined the
ModbusE protocol and have been presented: the BSG (Base
Station Gateway) station that manages the acquisition cycle;
acquisition cycle structure; messages structure; SDO (Service
Data Object) and PDO (Process Data Object) objects;
multiprocessor work for UART (ModbusE devices only);
interrupts; DMA transfer; as well as specific RS485 facilities
for switching the direction of communication; the time interval
of 3.5 and/or the interval time of 1.5 between two characters;
commands from 100 to 102 used for reading and slot address
mapping operations; an algorithm for determining the duration
of slots. In this paper is presented a solution to get the optimal

73

data flow as close as possible to the bandwidth for messages
communication. The solution will be presented for the
maximum serial communication speed of 12Mb/s. The
implementation was performed on a Sitara AM335x
microcontroller, equipped with a 32-bit ARM Cortex A8 RISC
core and two real-time PRU (Programmable Real-Time Unit)
cores.

Next in section II are presented related work, in section III
is presented the basic architecture of a BSG (Base Station
Gateway), in section IV is presented the structure of Modbus
Extension messages and the acquisition cycle implementation,
and the performances evaluation of the acquisition cycle,
section, in section V are presented comparisons with other
solutions, and in section VI conclusion and future work.

II. RELATED WORK

Because the Modbus protocol is a very popular and
appreciated protocol various extensions were proposed and
some of them keep their backward compatibility with most of
the statements that were mentioned in section I. In paper [4] the
authors proposed to expand the addressing space from 8 bits
addresses to 16 bits addresses. This way, only devices that
implement this extension will accept this addressing mode, and
the others will ignore these messages. Also in this paper, a
multi-master architecture has been proposed in which each
device can become a master at some point through a master's
choice protocol. The extension is very simple and does not
require any additional hardware, so it is suitable for cheap
embedded distributed systems. Another direction of research
regarding Modbus RTU refers to the correction and detection
of errors. In paper [5] a specialized repeater device is used for
the detection of an error, this device is used both in the receiver
and in the transmitter. This approach respects the classic
Modbus RTU protocol so the bus extension can also be
realized with classic Modbus RTU devices. In paper [6] it is
proposed a better approach to the Modbus RTU protocol for
the integration of devices in industrial networks, using wired or
wireless communications Modbus RTU. This type of
communication protocol increases the topological and control
limits of the Modbus RTU classic, allowing a wireless/wired
tree bus network topology. The proposed architecture presented
a reduced rate of error communication, showing that the
solution that was described in the paper can meet the tough
requirements of industrial communications networks. In paper

[7] is provided a case study where Protege language can be
used in industrial systems that use Modbus protocol for serial
port and TCP/IP. The authors of the paper [8] a Modbus slave
model using Modbus RTU for serial line RS-485, and the work
is focused on creating a software architecture that reduces the
development period. In paper [9] it is presented a tool to
measure the response time in industrial networks using Modbus
protocol on the RS485 serial line. In paper [10] it is proposed
an adaptation of Modbus for controller area network (CAN)
using embedded devices that are not expensive. In paper [11] it
is presented a simulation of the traffic in networks using
Modbus protocol to evaluate security in the systems of type
SCADA (Supervisory control and data acquisition).

Regarding the Modbus Extension protocol in previous
works, the performances resulted from using Cortex Mx cores
were 49.6% payload data at a speed on the serial port of 10.5
Mb/s with STM32F407, 36% payload data at speed on the
serial port of 27Mb/s with STM32F746, and 58.9% payload
data at speed on the serial port of 11.5Mb/s with LPC4300
which has 2 Cortex M0 and M4. But Cortex M7 and Cortex
M4 do not have enough resources that can be used to
implement OPC UA client and server of high performance
[12].

III. INTERNET OF THINGS ARCHITECTURE IMPLEMENTED

BY BASE STATION GATEWAY

In the paper [13] it is presented the architecture of the IoT
gateway used for improving the useful data flow in the
acquisition cycle level. The solution proposed in this paper can
be integrated into a monitoring and control system used in
smart buildings [14]. Namely, it was proposed to use the
processor Sitara AM335x developed by Texas Instruments.
Thus the processor Sitara AM335x is composed of a 32 bit
ARM Cortex-A8 core that operates at 1GHz and 2
Programmable Real-Time Units (PRU) cores that operates at
200 MHz. In the paper [13] it was proposed that
implementation of the Modbus Extension protocol acquisition
cycle to be done on one of the two PRU cores and that the OPC
UA server and client be implemented on the high power ARM
Cortex A8 core. It was also presented that the real-time PRU
(Programmable Real-Time Unit) cores allow the building of
the client/server Modbus Extension protocol with higher usage
performance of communication channel than the solutions
presented in previous works on Modbus Extension protocol.

Fig. 1. ModBus Extension, Modbus RTU messages [12].

74

IV. PERFORMANCE ANALYSIS OF THE DATA ACQUISITION

CYCLE

Three types of messages can be used for the Modbus
protocol [3]: send data with recognition (Send Data with
Acknowledgment - SDA) - request-response messages; send
data without recognition (Send Data with No Acknowledgment
- SDN) - request messages; send and request data (SDR) -
request-response. In Fig. 1 it is presented the structure of
ModbusE and Modbus RTU protocol messages (MBE is short
for Modbus Extension).

As can be seen in Fig. 1, Modbus Extension protocol
messages have no function code and no function parameter
fields either in the request messages or response messages so
the bandwidth is lower than of Modbus RTU case, so for an
identical quantity of useful data the Modbus Extension
message is shorter than the Modbus RTU message. A Modbus
Extension message can be easily converted into a Modbus
RTU classic message if the address of the slot becomes the
address of the server (slave), and the beginning part from the
data area becomes the function code and the function
parameters. In the ModbusE protocol, addresses larger than
0x80 are treated as Modbus RTU addresses. In Fig. 2 it is
presented the acquisition cycle (AC) structure where slot S0 is
SYNC and slot Sn-1 is SEND.

Fig. 2. Acquisition cycle structure [12].

For the acquisition cycle are defined [3]: the acquisition
cycle may have at least 3 slots and cannot have more than 246
slots (the 247 number being kept for local commands on the
gateway); each slot supports n0, n1,....,nn-1 characters sent and
received (slots 0,1 and those indirected to the slot 1 do not
receive characters); the slots have a data structure attached with
status information, control, and data; each slot consists of ni x θ
ticks (it is better that the tick to not generate interrupts but to
be input clock for the timer); a Modbus Extension protocol
device can subscribe to multiple slots using configuration; slot
0 (n0) is a slot with special functions that marks the beginning
of the cycle and can be used, for example, to propagate the
command “start scanning” the inputs or send data to the
outputs; slot number 1 (n1) is a slot with special functions, it is
used to indirect those slots that are empty (whether they are not
defined or server stations working with these kind of slots are
no working anymore or defective); the slot (nn-1) is a slot with

special functions and generally used for aperiodic commands
and commonly indirected to slot 1, if no aperiodic commands
exists , or to a slot that has the number greater than the last slot
from the acquisition cycle with the indirect command. The
number of bytes of the message issued for this command is less
than or equal to that allowed for the last slot.

As previously mentioned, one of the real-time PRU
processors is used to implement the acquisition cycle (AC).
The acquisition cycle will be implemented on the client station
(master) which will send messages to the server station (slave).
The server station retrieves data from the sensors or sends data
to the execution elements. Reception and transmission of
messages from slots is done with speeds of up to 12 Mb/s, the
speed of 12Mb/s requires a very good response for the PRU
(the duration of a 10-bit character to be processed is 0.83
microseconds).

The software for the client station (master) is based on the
indicators of the peripheral devices used UART and the timer
IEP (Industrial Ethernet Peripheral), the IEP timer with two
comparators used to determine the end of a message at
reception and to signal the end of the slot. When the end of the
slot is signaled, the comparison register with the duration of the
next slot is loaded and the RS485 driver is switched to
transmission, after which the transmission of the message starts
using the indicator for the empty transmission register.

During this time, the overrun indicator for slot duration is
also tested. If an overrun occurred, a transmission error is
signaled, the RS485 driver is switched to reception and the
next slot is moved. If the entire message has been sent, it is
switched to reception and the reception of the first character or
overrun is expected for the duration of the slot, in which case a
transmission error is signaled, the RS485 driver is switched to
reception and move to the next slot. If a character has been
received, it stays on reception until the end of the message is
indicated. In this loop the indicator for overtaking the slot is
tested and the same actions mentioned above are taken. It then
switches to broadcast and waits for the slot completion
indicator to be exceeded, then the main loop resumes with the
next slot (Next_Slot = (Current_Slot + 1) % NumberMaxSlot).

The software for the server station (slave) similarly takes
place with the difference that at the level of the server (slave)
the operation of moving the message from the reception buffer
to the buffer of the application appears. Further we will present
the results obtained for an acquisition cycle consisting of 10
slots. Only serial communication between client and server was
taken into account and no external action was taken through the
ARM Cortex A8 processor.

As can be seen from Fig. 3 the period of a 10 slot
acquisition cycle is 1.085ms. Theoretically in continuous
emission conditions, 1307 10 bit characters can be transmitted
on a 10 slots cycle. In reality 1234 characters (8 useful data bits
without the start bit and the stop bit) were transmitted over a 10
slot acquisition cycle. So it results in an upload percentage of
characters of 96.79% and a payload (useful data) of 75.53%.

75

Fig. 3. Acquisition cycle.

TABLE I. COMPARISONS WITH OTHER SOLUTIONS

Hardware Support
Serial line

Rate(Mb/s)

Communication
Efficiency %

Efficiency useful data
%

Software
Implementation

Processors

STM32F407
168 MHz [12] 10.5 70.62 49.6

Real-Time Operating
System, Interrupt

Service Routine, Direct
Memory Access

Cortex M4

STM32F746 216 MHz [12] 27 37.8 36

Real-Time Operating
System, Interrupt

Service Routine, Direct
Memory Access

Cortex M7

MCB4300(LPC4357)
180 MHz [2] 11.5 76 58.9 Pooling

Cortex M4, M0 (used
Cortex M0)

Sitara AM335x (ARM
Cortex A8 1GHz, PRUs –

200MHz)
12 96.79 75.53 Pooling

ARM Cortex A8 RISC
core and 2 PRU cores –

used PRU0

V. COMPARISONS WITH OTHER SOLUTIONS

As we can see in Table I, from previous work the
performances resulting from using Cortex Mx cores were
49.6% payload data at a speed on the serial port of 10.5 Mb/s
with STM32F407, 36% payload data at speed on the serial port
of 27Mb/s with STM32F746, and 58.9% payload data at speed
on the serial port of 11.5Mb/s with LPC4357 which has 2
Cortex M0 and M4. The payload of 75.53% for Sitara AM335x
was obtained for an acquisition cycle consisting of 10 slots.
Also the Sitara AM335x microcontroller, unlike the LPC4357,
has the hardware resources (ARM Cortex A8 core) to
implement the server and client OPC UA required for the IoT
gateway that uses Modbus Extension protocols. In Table I the
data and the values for the first two rows were taken from the
paper [12] and for the third row were taken from the paper [2].
In Table I, there are compared more solutions of the same
Modbus Extension data source on different hardware facilities.
The software implementation (that is not a simple porting, but

it is a specific new algorithm for PRU architecture) is
optimized on the specific hardware in order to use all facilities
(UART peripherals, EDMA, etc.) that can speed up the
execution and improve the data payload.

VI. CONCLUSION AND FUTURE WORK

Due to the implementation of the software without a real-
time operating system and interrupts, an important over-control
is eliminated, which allows the improving of the data flow on
the communication channel. Thus, a percentage of 75.53% was
obtained for the transfer of useful data (payload). These results
were obtained in conditions when the slot duration adjustment
time was the same for all slots. This time depends on the
number of characters that were sent by the client station,
characters that at the server station level must be moved from
the data link level to the application level. The longer the
message it is, the larger the adjustment time must be. So setting
the adjustment time to the size of the message sent would
increase the use of the channel for useful data. As future work,

Acquisition Cycle Period
Slots transmited by client (master).

Slots received by server (slave).Transmision/Reception switching line on client (master) side.

Transmision/Reception switching line on server (slave) side.

76

it will be studied and analyze the use of DMA channels to
transfer data directly from the ARM Cortex A8 processor data
area and the PRU data area. A good result was also obtained by
using the LPC4357 microcontroller (58.9%) but for a speed of
11.5 Mb/s. The higher the communication speed is, the more
significant the time to move the message in the calculation of
the percentage of channel usage because the duration of the
acquisition cycle will be larger in that the duration of a bit is
longer, namely 86.95 ns against 83.33ns. As the main
contribution, this paper proposed an implementation for
ModBus Extension that was optimized and tested on the PRU
unit from Sitara AM335x.

ACKNOWLEDGMENT

This work is supported by the project
ANTREPRENORDOC, in the framework of Human Resources
Development Operational Programme 2014-2020, financed
from the European Social Fund under the contract number
36355/23.05.2019 HRD OP /380/6/13 – SMIS Code: 123847.

REFERENCES

[1] Modbus.org, “MODBUS APPLICATION PROTOCOL
SPECIFICATION V1.1b”, 2006. Available: from
https://modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf.
[Accessed: 14- Feb- 2022].

[2] V. GĂITAN, & I. ZAGAN, Local industrial networks – Modbus
Extension /Rețele industriale locale – Modbus Extins. Suceava: Editura
Universității “Ștefan cel Mare”, 2019.

[3] V. G. Gaitan, N. C. Gaitan, I. Ungurean, “A flexible acquisition cycle
for incompletely defined fieldbus protocols”, ISA Transactions, vol. 53,
no. 3, 2014. DOI: 10.1016/j.isatra.2014.02.006.

[4] G. Cena, M. Cereia, I. Cibrario Bertolotti and S. Scanzio, "A MODBUS
extension for inexpensive distributed embedded systems," 2010 IEEE
International Workshop on Factory Communication Systems
Proceedings, Nancy, pp. 251-260, May 2010. doi:
10.1109/WFCS.2010.5548625.

[5] C. Urrea , J. Kern, C. Morales, “Error detection and correction to
enhance the data rate of smart metering systems using Modbus-RTU”,

Electr Eng, 2020. Available: https://doi.org/10.1007/s00202-020-01067-
7.

[6] G. B. M. Guarese, F. G. Sieben, T. Webber, M. R. Dillenburg, C.
Marcon, “Exploiting Modbus Protocol in Wired and Wireless Multilevel
Communication Architecture”, 2012 Brazilian Symposium on
Computing System Engineering, Natal, Brazilia, pg. 13-18, 2012. doi:
10.1109/SBESC.2012.12.

[7] Y. Wang, V. Gaspes, “A compositional implementation of Modbus in
Protégé”, 2011 6th IEEE International Symposium on Industrial and
Embedded Systems. doi:10.1109/sies.2011.5953654.

[8] T.-S. Nguyen, T.-H. Huynh, “Design and implementation of modbus
slave based on ARM platform and FreeRTOS environment”, 2015
International Conference on Advanced Technologies for
Communications (ATC). doi:10.1109/atc.2015.7388372.

[9] G. Künzel, M.A. Corrêa Ribeiro, C.E. Pereira, “A tool for response time
and schedulability analysis in modbus serial communications”. In
Proceedings of the 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), Porto Alegre, Brazil, 27–30 July 2014;
pp. 446–451. doi:10.1109/indin.2014.6945554.

[10] G. Cena, I. C. Bertolotti, T. Hu, A. Valenzano, “Design, verification,
and performance of a MODBUS-CAN adaptation layer”, 2014 10th
IEEE Workshop on Factory Communication Systems (WFCS 2014).
doi:10.1109/wfcs.2014.6837605.

[11] R. Al-Dalky, O. Abduljaleel, K. Salah, H. Otrok, M. Al-Qutayri, “A
Modbus traffic generator for evaluating the security of SCADA
systems”, 2014 9th International Symposium on Communication
Systems, Networks & Digital Sign (CSNDSP).
doi:10.1109/csndsp.2014.6923938.

[12] V. G. Găitan and I. Zagan, “Experimental Implementation and
Performance Evaluation of an IoT Access Gateway for the Modbus
Extension,” Sensors, vol. 21, no. 1, p. 246, Jan. 2021, doi:
10.3390/s21010246. [Online]. Available:
http://dx.doi.org/10.3390/s21010246 .

[13] C. Ventuneac, V. G. Găitan, “Implementation of an IIoT Access
Gateway for the ModBusE – Modbus Extension using BeagleBone
Black”, INTERNATIONAL CONFERENCE European Integration -
Realities and Perspectives 16 th Edition, EIRP 2021, Danubius
University, May 2021.

[14] I. Ungurean and N. C. Gaitan, "Monitoring and control system for smart
buildings based on OPC UA specifications," 2016 International
Conference on Development and Application Systems (DAS), 2016, pp.
82-85, doi: 10.1109/DAAS.2016.7492552.

77

