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Abstract—Multiple components affect the behavior of CPU 

execution tasks, mainly mutual exclusion during access to the 

shared resources and synchronous transmissions between tasks 

that require specific priorities. Referring to real-time task 

scheduling, the most important issues addressed are monitoring 

the deadline of the tasks, the probability of non-compliance with 

the deadline and ensuring that they are completed within the 

deadline imposed by the controlled system. This leads to the fact 

that a tasks set is feasible if the system has adequate resources to 

execute the tasks without losing any deadlines. To approach this 

challenge, this article addresses the feasibility analysis of runtime 

for real-time tasks to be performed in a virtual space before 

applying to a real embedded device. These processes take place 

offline, even before a system executes a set of tasks. In order to 

perform the feasibility analysis of the system, efforts are being 

made to provide virtual environments and simulators, such as the 

RISC-V ISA simulator and the WCET (Worst Case Execution 

Time) measurement, subsequently. These simulators have 

application-specific requirements, with their own advantages.  

Keywords— Computer architecture; Pipeline processing; 

Performance analysis; Scheduling. 

I.  INTRODUCTION  

The proposal of different ISAs (Instruction Set 
Architectures), CPU hardware implementations and the use of 
central processing units in systems embedded in everyday life 
is regularly growing. An obvious example is robots, distributed 
data acquisition systems, and modern machines. The wiring is 
replaced with bus-type systems, smart switches take the place 
of classic switches and motor controllers integrate powerful 
processors. This allows for easy integration of additional 
sensors and more efficient error analysis in the event of a fault.  

Very often, time-constrained control applications are 
completed by creating substantial pieces of code in assembly 
language [1], setting task priorities, using inter-task 
communication mechanisms, and using interrupts, respectively. 
The main repercussion of this concept is that management 
software written by empirical procedures can be deeply 
uncertain. If it cannot verify all crucial time constraints a priori 
and the operating system does not incorporate explicit 
procedures for carrying out tasks in real time, the system may 

perform fine for a time, but may not meet deadlines established 
in individual unique but cases. The repercussions of collapse 
can occasionally be disastrous and can harm humans or lead to 
significant destruction to the environment. 

Running real-time embedded systems in the design of 
security systems comes with quite a challenge in terms of CPU 
runtime analysis. Recent researches has led to the improvement 
of static program evaluation mechanisms that definitely 
establish the upper limits for the WCET of code fragments 
expressed as procedures in execution [2]. We name systems in 
real-time, when their correct behavior revolves around not 
particularly on the logically correct output but further on the 
point when these tasks are performed [3]. A real-time process 
must perform within strict time limits, applied to the actions in 
its environment and the process it leads. This means that the 
correct performance of a system in real-time revolves around 
not simply on the result of the prediction but likewise on when 
the result is generated. Therefore, knowledge of the execution 
attributes of a program is crucial to the outstanding design and 
development of a real-time system [1]. The problem of 
calculating the stringent limits of the execution of a program is 
a dynamic field of analysis, with software and tools that use 
both static methods and dynamic evaluation. The evaluation of 
static techniques calculates the upper limits of the execution 
time from an analytical model of the target architecture. 
Dynamic evaluation programs determine the execution time of 
assessments executed on real hardware. Hybrid techniques 
merge runtime data obtained from assessments with static 
analytical data, such as control flow charts, to increase the 
security and accuracy of results. Probabilistic techniques seek 
to determine statistical models from assessments to calculate 
the upper limits of the execution time [4]. 

We structured this article as follows. After a concise 
introduction in chapter I, chapter II presents the current state of 
research, considering the methods of estimating WCET and the 
importance of this analysis in the design of critical systems. 
Chapter III describes the analysis of the most unfavorable 
execution time based on the RISC-V ISA simulators, and the 
last chapter presents the conclusions and future research 
directions. 
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II. RELATED WORK 

CPU execution time and WCET are the most important 
aspects of real-time critical systems. An executable program 
exhibits a specific fluctuation regarding the execution times, 
determined by internal events and environmental interference. 
Of all the execution times of a program, the exact maximum is 
the highest execution time a program can ever reach [5]. This 
time is named WCET. There are two classes of WCET 
estimation methods, namely static and those based on practical 
measurements. A secure mechanism for timing evaluation is a 
static analysis by an abstract interpretation that produces 
proved upper limits for WCET tasks. WCET static analyzers 
are feasible for complex processors and support both single-
core and multi-core processors. Thus, suitable models of 
processor / System-on-Chip (SoC) architecture can be 
established. However, there are current high-performance SoCs 
that have uncertain or undocumented items that affect 
synchronization performance. WCET hybrid analysis merges 
static value and path evaluation with assessments to capture 
task synchronization behavior. Compared to end-to-end 
measurements, the improvement of hybrid techniques consists 
of brief code fragments can be selected, which then cover the 
full program under evaluation. Based on these assessments, the 
most unfavorable path can be determined [4]. The most 
representative tools for determining WCET are: pWCET 
(partially WCET) [6], Heptane [7], OTAWA [8], W-SEPT [9], 
SWEET [10], Bound-T [11] and T- CREST (Time-predictable 
multi-core architecture for embedded systems) [12]. 

Wilhelm Reinhard et al. [13] summarized existing WCET 
estimation methods and tools. Static techniques are not based 
on actual hardware execution. They consider the code itself, 
merge the control flow chart with a model of the hardware 
architecture, and provide an upper bound for this mix. 
Measurement-based techniques implement code on physical 
hardware or a simulator for specific inputs. Next, based on the 
measured times, the margins execution times are determined. 
Therefore, static techniques are highly secure and guarantee 
that the execution time will not be higher than the prediction 
obtained. 

In 2015, Jacobs et al. [6] examined an individual case of 
pWCET. Calculating pWCET is useful in many contexts, such 
as debugging performance and energy efficiency. Detection of 
code fragments with large WCET is highly problematic, as the 
worst case may appear in unusual circumstances and may not 
be simple to unmask, so common profiling styles do not 
handle. pWCET is helpful for developers to determine possible 
bottlenecks (at worst) in their applications and to concentrate 
their efforts on proper code snippets. pWCETs are useful for 
splitting a task into smaller chunks that do not overlap. 
Runtime is also important for security: some software attacks 
involve inserting other code into a target application. A shelter 
may consist in calculating the WCET of a task and checking 
that the current execution time does not exceed the calculated 
value [14]. 

Damien Hardy et al. [7] introduced Heptane, a free 
software program that predicts upper execution time limits for 
MIPS (Microprocessor without Interlocked Pipeline Stages) 
and ARM v7 architectures, to analyze with late WCET 

evaluation routines. The proposed software architecture 
designed for Heptane is modular and extensible to simplify the 
assimilation of new methods. Heptane calculates WCETs using 
static binary code analysis. It has a static analysis of micro-
architectural parts such as caches. Linked to alternative static 
open source WCET analysis tools, Heptane focuses especially 
on cache analysis (cache hierarchy analysis, support for various 
replacement schemes), but only supports two target processors.  

Rabab Bouziane et al. [14] showed how Heptane, a static 
WCET estimating tool, can calculate pWCET based on ILP 
(Instruction Level parallelism). Unlike Heptane, OTAWA [8] 
supports multiple processor architectures but implements less 
advanced cache analysis. The OTAWA simulator was adapted 
by Maiza Claire et al. [9] for the W-SEPT project. The W-
SEPT project was developed to examine and use the influence 
of program semantics on WCET evaluation. Semantic issues 
and the elimination of low-feasibility paths are the focus of the 
project. As much as available, the goal is to increase and 
readjust the classic WCET estimation flow.  

SWEET (SWEdish Execution Time tool) [10] focuses on 
program flow study and does not cover any hardware analysis. 
The purpose of SWEET flow analysis is to automatically 
calculate instruction flow information. SWEET provides a 
strong loop-related analysis, as the upper limits of the number 
of loop iterations must be known to obtain WCET estimates. 
SWEET flow analysis can also determine more accurately lines 
that are executable depending on the structure of the control 
flow graph, but are not workable when examining the 
semantics of the program and the values of the inputs. 

Bound-T [11] is a software tool that uses static analysis to 
calculate WCETs and the use of the embedded stack. This tool 
supports various processor architectures, but does not provide 
cache analysis. Another issue with this topic in Bound-T is 
memory access. If the analyzed program accesses a variable, 
sometimes as a whole (say a 32-bit word), and sometimes in 
chunks (such as four bytes), Bound-T analysis of the values of 
the variable and thus the entire control flow, may be wrong.  

T-CREST (Time-predictable multi-core architecture for 
embedded systems) is a static WCET estimation tool applied to 
the study of Patmos architecture. The toolkit enhances, for 
example, a hardware model, processes and translates input 
format information for AbsInt aiT timer analysis annotations, 
which operate this data in enhancement to the ELF binary to 
calculate strict WCET limits [12]. 

III. WCET ANALYSIS BASED ON RISC-V ISA 

SIMULATORS 

The performance of a real-time system depends on the fact 
that all scheduled tasks can be guaranteed to be completed 
before the deadlines. Best Case Execution Time (BCET) and 
WCET are used for real-time systems scheduling analysis. In 
recent years, there was considerable interest in using formal 
methods and, in particular, in the verification of automated 
models for calculating BCET and WCET, as they immediately 
provide precise answers to these questions immediately. There 
are presently several simulators developed for the RISC-V 
architecture, we listed these in Table I. Operating RISC-V 
(Reduced Instruction Set Computer) has led to significant 
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advances in the open-hardware community, with many new 
models of processors and accelerators. However, turning open 
hardware into tools for researching computer architecture can 
be a challenge. It hasn't been long since RISC-V released the 
initial stable announcement of the RISC-V vector development, 
and there are already several free and commercial products. 
Examples are Ara [15] from ETH Zurich and Xuantie-910 [16]. 

Incorporating open-source hardware and software 
components can be time-consuming and difficult to maintain, 
besides being difficult to simulate. In particular, when using 
open-hardware platforms, there is a simulation gap, with 
researchers addressing slow software simulators or fast FPGA 
(Field Programmable Gate Array) prototyping. There are 
commercial emulation tools, but they are far too expensive to 
use in the academic research activity [17]. Researchers in 
computer architecture still require a simulation framework that 
supports them to cooperate with their partners in industry and 
research. However, the licensing conditions of a simulator and 
the quality of the code may prevent this teamwork. Some open 
source software licenses may be extremely restrictive, 
principally in an industrial environment, as they request the 
release of any simulator improvements. In addition, weak code 
quality and lack of modularity may prevent new programmers 
from understanding and changing the code.  

FireSim can simulate random hardware models created in 
Chisel (Constructing Hardware in a Scale Embedded 
Language) or projects that can be converted to FIRRTL 
(Flexible Internal Representation for RTL), including Verilog 
projects via the Yosys Verilog to the FIRRTL stream. FireSim 
can develop its own RTL (Register Transfer Level) and run at 
prototype FPGA speeds close to cloud FPGAs, while achieving 
cycle performance results. FireSim can integrate custom 
software templates for units that you do not want / need to 
create as RTL. FireSim was essentially designed to simulate 
data centers by fusing real-time open logic for RISC-V 
processors with a cycle-specific network simulation. FireSim 
gives all the RTLs and models needed for cycles, simulating 
precisely between one and thousands of multi-core computer 
nodes. It also offers a Linux distribution that is suitable with 
the RISC-V systems. One of the frequently operated computer 
system architecture analysis platforms that includes system-
level architecture and processor micro-architecture is gem5 
[18], which can analyze those new theories about vector 
architectures. The Gem5 simulator surmounts these limitations 
by bringing a malleable, interchangeable simulation system 
able of evaluating a wide area of systems and is accessible to 
all researchers [18]. 

TABLE I.  SIMULATORS DEVELOPED FOR RISC-V ARCHITECTURE 

Simulator 

Name FireSim [19] gem5 [20] Spike [21] 

BRISC-V Error! 
Reference source not 

found. 

WebRISC-V 

[23] 
riscvOVPsim [24] 

Licence 

BSD (Berkeley 
Software Distribution) 

BSD-style 
BSD 3-
clause 

Proprietary – open source BSD 3-clause 
Proprietary (core simulation 
platform), Apache License  

For multimedia extensions, gem5 supports Intel MMX and 
SSE (64-bit and 128-bit extensions), which are achieved as part 
of the root micro-architecture. However, support for extra 
ongoing developments, such as AVX2 and AVX-512, is 
missing. In terms of vector architecture, there is complete 
support for ARM SVE. Gem5 is primarily created in C ++ and 
Python, and most segments are supplied under a BSD-style 
license. It can simulate a complete system with operating 
system devices or only in user spaces, where system functions 
are produced directly by the simulator in syscall emulation 
mode (SE mode). It can build flexibly a memory system from 
caches. Newly, the Ruby simulator has been incorporated with 
gem5 to bring a highly malleable memory system model [25]. 

Spike, the ISA RISC-V simulator, achieves a practical 
model of one or more RISC-V versions. Projects are primarily 
versioned to show when the Application Programming 
Interface (API) has been enlarged or become inappropriate. In 
this vision, Spike intends to track the SemVer (Semantic 
Versioning Specification) modeling scheme, in which later 
versions are incremented when adjusting compatible APIs. 
WebRISC-V is a web-based RISC-V simulation environment 
that aims to facilitate student learning and the teaching 
experience of instructors. One of the major improvements of 
WebRISC-V is its direct availability in the web browser based 
on its innovative implementation. WebRISC-V has the back 

end created in PHP and the front end in HTML and JavaScript. 
However, if the user prefers a local installation, it can be done 
on a Linux or Windows server. WebRISC-V integrates the five 
stages of the RISC-V architecture, incorporating the ability to 
investigate the behavior of hazard detection and redirection 
units [26]. This simulator incorporates the majority of the 
instructions of the basic 64-bit RISC-V ISA module and its 
extension. To avoid slowing down or blocking the server, the 
execution of each uploaded program is restricted to 1000 clock 
cycles, and the data memory is restricted to 5 KB. So, in state 
of possible programming faults, such as infinite loops, the 
execution can end in a limited time. When loading assembly 
instructions, the analyzer tests for unaccepted / wrong 
instructions or wrong labels. If there is a failure, the simulation 
pauses and the corresponding line number is exposed. 
Execution of the WebRISC-V assembly code can be done in 
two ways, executing all the code simultaneously or step by 
step. The pipeline registers for each stage have a certain color 
for Fetch, Decode, Execute, Memory, and Write-Back (Fig. 1). 
Simultaneous execution of all code lines is usually used to 
verify the rightness of the assembly code, but could also check 
the final status of registers and data memory or entire clock 
cycles. By performing in simple steps, the user can observe in 
the left panel the progress of the instructions in each step and 
can analyze the values of the registers and the contents of the 
data memory.  
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Fig. 1. WebRISC-V highlighting the steps of processing instructions.[27] 

WebRISC-V clearly specified the binary code fields for 
each statement, along with the numeric value, the type of 
statement, and the value of each field (Fig. 2). By picking the 
hazard detection and redirection units, the user can examine the 
analogous input and output signals (Fig. 3) and thus can track 
any errors during execution. 

 

Fig. 2. WebRISC-V and the characteristics of binary code fields. [27] 

The WebRISC-V simulator was developed based on the 
WebMIPS simulator [28] which came with several 
enhancements such as: 

• A list of implemented instructions has been included to 
the “upload program” page, to provide users with a 
table with easy examples. 

• The cycle number and program name are always 
visible to improve context awareness. 

• The user can examine the values inside the threads by 
directly moving the cursor on a certain architectural 
component (a pop-up window can be opened for 
convenience). 

In addition, an important revision to increase usage is the 
Step-Back feature, which grants the user to go back one step at 
a time during execution to accurately analyze changes and 
make it easier to understand. The user can go back and forth on 
each clock cycle to see the specific changes. 

 

Fig. 3. WebRISC-V and the hazard detection unit. [27] 

The BRISC-V(Boston RISC-V architecture design 
exploration suite) platform offers many opportunities for 
practical education in computer architecture [29]. The platform 
contains a RISC-V simulator used to test software independent 
of any hardware system, a suite of RISC-V tools for compiling 
and executing user code, a modular, parameterized, 
synthesizable multi-core RISC-V hardware system described in 
Verilog and a graphical user interface (GUI) used to generate 
and view hardware systems with one or more cores. BRISC-V 
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platform tools provide a wealth of RISC-V-based software and 
hardware understanding resources [31]. 

The riscvOVPsim simulator is simple to understand and 
efficient to operate. It is flexible, proper and quick, being 
developed by Imperas Software. There is no complex 
installation process or scripts for downloading and installing 
riscvOVPsim, thus just download and run the executable with 
the configuration options for RISC-V. riscvOVPsim is 
configurable to represent exactly the same deployment options 
that RISC-V processing operators choose, making it an 
excellent tool for developing RISC-V application software and 
verification and compliance testing. The simulator can join to 
GDB (GNU Project debugger) and Eclipse to debug source 
code and run in batch mode for regression analysis and use in 
repeated integration environments. It also has many tracking 
options to help you develop your program. riscvOVPsim has a 
built-in fixed platform comprising a processor instance of a 
variant of the RISC-V processor model and a memory 
subsystem. 

Considering the nMPRA (multi pipeline register 
architecture, where n is the scale of multiplication) + nHSE 
(hardware scheduler engine for n threads) micro-architecture 
illustrated in Fig. 4, current research requires the development 
of a simulator for nMPRA architecture on RISC-V. For this, 
implementing the nMPRA specific resource remapping 
mechanism for RISC-V ISA is considered in the proposed 
simulator [32]. It is also important to highlight WCET on the 
proposed nMPRA + nHSE concept. The objectives of the 
innovative solutions of the high performance micro-

architecture nMPRA and nHSE are represented by improving 
the time for changing the context of tasks and implementing 
specific RTOS (Real Time Operating System) functions in 
hardware, reducing kernel latency [29]. nMPRA is a 
characteristic architecture with various (n) pipeline registers. In 
this context, based on the multiplexing of multiplied pipeline 
resources for each processor instance (sCPUi), the nMPRA 
approach and the nHSE module produce an innovative solution 
with a kernel latency at one or two processor cycle events. 
These results represent a substantial improvement in RTOS 
software solutions or hybrid software / hardware 
implementations. Implementing RTOS in nMPRA, called 
HW_nMPRA_RTOS, also incorporates nHSE illustrated in 
[30]. HW_nMPRA_RTOS offers the essential functions of 
hardware-implemented RTOS with remarkable response times 
ranging from one machine cycle to less than three machine 
cycles (in occasional instances), depending on the case. 
Considering the RISC-V architecture, the CSR block is the 
design principle for HW_nMPRA_RTOS registers[33][34]. 
The objective of this project was to create, implement, 
experiment, and certify an ingenious approach called 
HW_nMPRA_RTOS. HW_nMPRA_RTOS is a merged 
acronym for nMPRA, nHSE and RTOS API, which operates 
and expands the notions of expanding data path capabilities. 
nHSE was designed as a scheduling module to enable the 
hardware deployment of an RTOS. The remarkableness of the 
HW_nMPRA_RTOS architecture is revealed in the name itself 
because the pipeline registers are expanded by sCPUi, which 
saves the hardware context of the thread. 

 

Fig. 4. Block diagram for nMPRA + nHSE microarchitecture [30] 
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This makes it easier to stop a pipeline instance and modify 
the context in an individual clock cycle. The multiplication of 
hardware resources and the registers of the nHSE scheduler are 
(partially) illustrated in Fig. 4.  

The simulator for the designed architecture is based on 
predictive execution utilizing the nMPRA approach to 
accomplish the time constraints demanded in real-time 
applications without exceeding the deadlines demanded for 
sCPUi and the imposed power consumption limit. The 
simulation, synthesis and implementation of this project in an 
FPGA allows the development and debugging of applications. 
The research conducted for this paper was complemented by a 
set of practical tests specific to implementing 
HW_nMPRA_RTOS in FPGA [30], and the scientific results 
were certified based on well-chosen experiments. 

IV. CONCLUSIONS AND FUTURE WORK 

All current security standards require reliable limits on the 
WCET of real-time tasks to be determined. The importance of 
synchronization analysis is proved by the recent funding of 
several projects, engaging leading industries in aerospace, rail 
and automotive, among others, with a focus on various RISC-V 
ISAs, multi-pipeline deployments with multiple issues and the 
resulting hardware increasingly complex. WCET estimates 
must be as strict as possible to optimize the capacity, power 
demands, and cost of the systems got. 

From the analysis of the simulators available for RISC-V 
ISA, we conclude that we can use the open source resources 
available in WebRISC-V and BRISC-V projects, to develop a 
simulator that will be used to test nMPRA + nHSE micro-
architecture as RISC-V ISA. The proposed simulator will be 
web-based so that it can be used independently of the user's 
operating system (similar to the implementation used by 
WebRISC-V and BRISC-V). 

Future research considers simulator tests for the nMPRA + 
nHSE micro-architecture as RISC-V ISA for WCET 
estimation. This is required for verification and validation, 
essential steps in the design of critical systems. Critical safety 
systems must be guaranteed and the maximum execution time 
must be limited and established, so that response times can be 
ensured when critical cases involve a timely response. Utilizing 
a faster processor is not a solution to get a predictable response. 
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