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Abstract—We often observe some kind or another of random 

fluctuations in physical, chemical and social phenomena to a 
greater or lesser extent. The analysis of influence of such 
fluctuations on phenomena is very important as a basic problem 
in various fields including design and planning of controlled 
systems in control engineering and analysis of option pricing in 
economics. In this paper, focusing on biological communities, 
we study the influence of the random fluctuations on 
predator-prey systems with diffusion. Noting that interaction of 
phytoplankton and zooplankton is the basis of a food chain in 
the lake and the ocean, we consider the two-species 
predator-prey systems consists of phytoplankton and 
zooplankton. We analyze the influence of the random 
fluctuations on the spatio-temporal patterns generated by 
phytoplankton and zooplankton by the numerical simulations. 

 
Index Terms—Spatio-temporal pattern, predator-prey 

systems, stochastic reaction diffusion systems, plankton 
dynamics, numerical simulations 
 

I. INTRODUCTION 

It is well known that many spatio-temporal patterns are 
observed in various fields of engineering and the analysis of 
such patterns has been one of challenging problems in pattern 
formations. So far, many excellent works have been done in 
analysis of the spatio-temporal pattern formations [1]-[6] 
however, most of such works are deterministic analyses. 
Although the deterministic analysis is effective for real 
phenomena, there exist some cases that the deterministic 
approach is not applicable. For example, random fluctuations 
have a great influence on the Turing structure and we often 
experience that the random fluctuations in the natural world 
change the ecological situations. In this way, analysis of the 
influence of random fluctuations on the phenomena is very 
important [7]. Among many phenomena, we especially 
consider the formation of the spatio-temporal patterns in 
biological systems [8] and we study the influence of the 
random fluctuations on the spatio-temporal patterns 
generated by two- species predator-prey system with 
diffusion.  Taking into account the fact that phytoplankton 
and zooplankton construct the basic role in the food chain in 
the ocean, we study the two-species predator-prey system 
consists of such plankton. 

II. STOCHASTIC PREDATOR-PREY SYSTEMS 
We begin with a description of the conventional 

deterministic one-dimensional two-species predator-prey 
model introduced in [9] [12],− , which is given by the 
reaction diffusion equation:  
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where ( )u t x,  and ( )v t x,  are densities of prey and 

predator at time (0 )t T∈Θ = ,  and 

position (0 )x G L∈ = , , ud  and vd  are their diffusion 
coefficients. The functions f(u,v) and g(u,v) are related to the 
growth and mortality of the prey and predation by the 
predator.  The function forms of f(u,v) and g(u,v) depend on 
the characteristics of the prey and the predator under 
consideration. In the case where two-species predator-prey 
system consists of phytoplankton and zooplankton, f(u,v) and 
g(u,v) are given in such a way that  
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where all parameters in Eqs.(3) and (4) are positive 

constants, b hα κ, , ,  and µ  denote the maximum per 
capita growth rate of the prey, the carrying capacity for the 
prey population, the half-saturation density of the prey, the 
coefficient of food utilization and the mortality of the 
predator.  

The 1st term of the R.H.S. of Eq.(3) means the local 
growth and natural mortality of the prey, which is given by 
the logistic growth. The 2nd term of the R.H.S. of Eq.(3) and 
the 1st term of the R.H.S. of Eq.(4) denote the trophical 
interaction of the prey and the predator, which is given by the 
so-called Holling type II trophical response [9] – [12]. In [9] 
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– [12] assuming that the diffusion coefficients ud  and vd  
are equal, the analysis is performed. This assumption is 
justified from the fact that the mixing is mainly caused by 
marine turbulence in natural plankton communities and also 
is appropriate for consideration of the non-Turing pattern 
formation.  

In this paper, since we are interested in the influence of the 
random fluctuations in plankton communities on their 
spatio-temporal pattern formation, instead of the 
deterministic model mentioned above, we propose the 
stochastic model below:  
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where ( )w t x,  and ( )q t x,  are mutually inde- pendent 

two-parameter Wiener processes [13].  
Assuming u vd d d= ≡ , according to [9] – [12], we also 

introduce dimensionless variables such that  
1
2( ) ( )u u b v v b t t x x dγ α α α= / , = / , = , = / ,%% % %  
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It should be noted that the 0.5-self-similarity [13] of the 

Wiener process such that 
1 1
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The equality in Eq.(8) holds in the sense of the 

distribution.  
It follows from Eqs.(5) to (8) that  
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where k mκγ α µ α= / , = /  and the superscript is 

omitted in the sequel for the simplicity of descriptions.  
We assume that the initial and the boundary conditions are 

given by 
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where subscripts denote partial derivatives corre- 
sponding to each subscript, (0 )TΘ = , ( T  is a positive 

constant), ( ) ν∂ ⋅ /∂  denotes the exterior normal derivative 

on the boundary G∂  of .G   
The pattern formation problems in the two-species 

predator-prey systems without random fluctuations in 
Eqs.(5) and (6)(or Eqs.(9) and (10)) have already been 
studied by Petrovskii and Malchow [9] – [12], and they found 
that an irregular pattern appears in some conditions in the 
initial predator distribution 0 ( )v x  (or the prey distribution 

0 ( )u x ). Main feature of this paper is to study the influence 
of the random fluctuations on spatio-temporal patterns in 
two-species predator-prey system, which is impossible by the 
model in Petrovskii and Malchow [9] – [12].  

III. DETERMINISTIC LINEAR STABILITY ANALYSIS 
In order to study the dominant behavior of Eqs.(9) and 

(10), consider the linear stability of Eqs.(9) and (10) without 
the random noises and diffusion, i.e.,  
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It is easily shown that Eqs.(13) and (14) have three 

spatially uniform equilibrium states 
( ) (0 0) (1 0)u v∗ ∗, = , , ,  and ( )e eu v, (co-existence of the 
prey and the predator) such that  

(1 )( ) ( )
1e e e e

ph mu v u h u p
p k

= , = − + , = .
−
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Although the linear stability of the equilibrium state 

( )u v∗ ∗,  depends on the values h p,  and α , it follows 
from the linear stability analysis that the equilibrium states (0, 
0) and (1, 0) are always saddle points and the equilibrium 
state ( )e eu v,  are unstable (stable) if  

(1 ) (1 ) ( (1 ) (1 ))h p p h p p< − / + > − / + . (16) 
 

IV. SIMULATIONS 
In this paper, taking parameters so as for the equilibrium 

state ( )e eu v,  to be the unstable focus and changing the 
initial distribution of the prey, we study the influence of the 
random fluctuations on the predator-prey systems by 
numerical simulations. Setting parameters as 2 0α = . ,  

0 6 1 0 4u vd d hβ = . , = = , = .  and taking the noise 

coefficients and the spatial region G  as 0 008u vr r= = .  

and (0 1200),G = , under the initial densities 0 ( ) eu x u=  
and 



9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008 
 

263 

2
0 ( ) 0 0000025( 900)ev x v x δ= + . − +  with two 

different δ , simulations are performed.   
 
(Case-1) 0 005δ = . :  Results of simulations are shown 

in Figure 1 and Figures 1(a) and 1(b) are time evolution of 
densities of the prey ( )u t x,  and the predator ( )v t x,  under 
the no noise and the noise. From Figure 1, we can see that in 
the noise case, the irregular region appears earlier than the no 
noise case. In order to see this more clearly, time evolution of 
the density of the prey ( )u t x,  in the ( )t x, -plain is shown 
in Figures 2 and 3. In Figures 2 and 3, value of the density of 

( )u t x,  is given by the color indicated at the color bar. From 
Figures 2 and 3, in both cases of the no noise and noise, the 
irregular region propagates at the constant speed and the 
onset of the irregular pattern in the noise case is earlier than 
the no noise case. Figure 4 is the ( )u v, -phase plain at 

250x =  for 1000< t < 2000 under the no noise and the 
noise.  

 

 
 
      (a) no noise case                                  (b) noise case 
 
Figure 1. Time evolution of densities ( )u t x,  and ( )v t x, of the prey 
and the predator under the no noise (left) and noise (right). 

 
Since Figure 4 captures only the characteristics of the 

behavior of the prey and the predator at the special spatial 
point x= 250, in order to see the global characteristics, define  

0 0

1 1( ) ( ) ( ) ( )
L L

A Au t u t x dx v t v t x dx
L L

= , , = , .∫ ∫   (16) 

 
 

The ( ( ) ( ))A Au t v t,  phase plain is depicted in Figure 5. It 
follows from Figures 4 and 5 that the predator and the prey 
randomly move in some restricted region in the phase plain in 
the no noise and the noise cases.  
 
 

 
Figure 2. Behaviour of the prey density u(t,x) in the (t,x) -plain under the no 
noise. 
 
 
 

 
 

Figure 3. Behaviour of the prey density u(t,x) in the (t,x) -plain under the 
noise. 

 
 
 
 

         (a) no noise case                               (b) noise case 
 
 
Figure 4. (y, v) -phase plain at x=250 for 1000< t <2000 under the no noise 
(left) and noise (right). 
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 (a) no noise case             (b) noise case 
 
Figure 5. Phase plane (uA(t), vA(t)) of spatially averaged densities for 1000< t 
<2000. 

 
 
(Case 2) 0 015δ = . :  It should be noted that the distance 

between minimum value of the initial predator distribution 

0 ( )v x  and the equilibrium  
 

 
     (a) no noise case                  (b) noise case 
 
Figure 6. Time evolution of densities ( )u t x,  and ( )v t x, of the prey 
and the predator under the no noise (left) and noise (right). 

 
state ev  is longer than one in Case-1.  
It follows from Figure 6(a) that behaviour of the densities 

of the prey and the predator under the no noise has some 
constant period so that the limit cycle is formed as shown in 
Figure 6(a). Figure 7 denotes the time evolution of the prey 
and the predator in the ( )u v, -phase plane at x=250 for 1000 

< t < 5000. The ( ( ) ( ))A Au t v t,  phase plain is depicted in 
Figure 8. In the noise case, the behaviour of the prey and the 
predator becomes very irregular as shown in Figures 5(b), 
6(b) and 8(b). In this case, the prey and predator move 
randomly inside of the limit cycle. From Figures 9 and 10, we 

can see that the irregular region propagates at the constant 
speed in the no noise and the noise cases. In this way, random 
uncertainties can drastically change the behaviour of the 
predator and the prey. In the real biological systems, we often 
observe that the predator and the prey form patchy 
inhabitable regions. One of reason of generation of patchy 
region seems randomness in the environmental situations. 

 
 

 
     (a) no noise case                               (b) noise case 
 
Figure 7. (u, v) -phase plain at x=250 for 1000< t <2000 under the no noise 
and noise. 
 
 
 

      (a) no noise case                                     (b) noise case 
 
Figure 8. Phase plane (uA(t), vA(t)) of spatially averaged densities for 1000< t 
<2000. 

 
 
 

 
 
Figure 9. Behaviour of the prey density u(t,x) in the (t, x) -plain under the no 
noise. 
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Figure 10. Behaviour of the prey density u(t, x) in the (t, x) -plain under the 
noise. 
 

V. CONCLUSIONS 
In this paper, the influence of the random uncertainties on 

the spatio-temporal pattern formation in the predator-prey 
systems with diffusion has been studied by numerical 
simulations. 

From the simulation results, we can see that random 
uncertainties can drastically change the behavior of the 
predator and the prey and random uncertainties caused by the 
fluctuations of environmental situations seem to be part of the 
reason that patchy region is generated in ecosystems.  

Petrovskii and Malchow [9] – [12] found that irregular 
region is generated in the case where the initial prey (or 
predator) distribution has intersection with its equilibrium 
state or it has a sharp inclination, however, we show that the 
irregular region can appear in the existence of the random 
fluctuations even if the conditions in Petrovskii and Malchow 
[9] – [12] are not satisfied.  
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