

349

7th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 27 – 29, 2 0 0 4

QUERYING WEB DOCUMENTS TO RETRIEVE DISTRIBUTED DATA

Diana CIUPEC1, Ştefan-Ciprian TANASĂ2

“Al. I. Cuza” University of Iaşi
Faculty of Computer Science
Str. G-ral Berthelot Nr. 16, RO-700483 Iaşi
1) dgorea@infoiasi.ro, 2) stanasa@infoiasi.ro

Abstract. Managing and querying web documents has been one of the most studied problems in recent years. In
our paper we present a method of querying web pages using a XML query language. It is known that although
most web pages are published in a non-XML format, there are means to convert a HTML document in a
XHTML one, which conforms to XML syntax. We provide a few case studies for three different types of web
queries: structure, content and hybrid. We propose an extension of XQuery language in order to support
patterns for URLs. This extension can be used to recursively traverse an entire Web site.
Keywords: XQuery, web pages, search engine, XHTML, XML, web programming.

Introduction
Today, a huge quantity of information is
available through web pages. Therefore, a matter
of research interest is developing a database
management system to suit the needs of the
Internet. The relational model seemed to be
ineffective when dealing with problems like
querying web pages, for example. Thus, a
technique to integrate data from heterogeneous
sources, in particular web pages and another
data models, is needed. The solution is to
publish data on the web in a standard format that
can be queried in a common way. On the other
side, querying web data raises other problems
because of the wide distribution of data,
unstructuredness, redundancy. Since today web
pages contain significant information, in this
paper we focus on the problem of querying both
the structure and the content of web pages.
Today the common approach in querying web
pages is keyword-based search through one or
more search engines. This kind of querying is
considerably weaker than database-like
querying. On the other side, it would be
impossible to query the entire web, like in a
DBMS, because of the lack of schema, the
dynamism of the network and the combination
of form and content.

While the Web is dominated by HTML-style
web pages, nevertheless the future is in a richer
mark-up, which offers separation of information
(content) from the way information is published
(presentation). The languages that offer this
richer markup are XML ([1]) and XHTML
(strict version) ([2]).
However this does not limit the generality, we
still can query old HTML pages ([3]) even if
their syntax is not XML-like. There are tools
like tidy ([4]) which translate a HTML
document in a XHTML one.

XQuery - a language for querying web pages
At W3C (World Wide Web Consortium [5])
request, a language designated to fulfill the
XML querying needs is developing (XQuery
[6]). It is now the official recommendation and
the vendors have already developed XQuery
implementations and support in their database
management systems (such as Tamino Server
4.1. [7]).
IBM and Oracle is now developing a Java API
which connects XQuery with Java language
(javax.xml.xquery). Also, the open-source
community has come with some XQuery
processing engines (QEXO-GNU XQuery
Implementation [8], Galax [9]).

XQuery is a very expressive functional language
with a simple and familiar syntax, which offers
the possibility of natively manipulate XML data
structures. A query is an expression that has to
be evaluated and its result can be mixed with
other expressions. From this point of view
XQuery is the most convenient way of
integrating more XML interfaces.
The XQuery data model is defined in terms of a
formal data model, not text, although XML files
are text. Each input and output for a query is a
tree of nodes, similar to DOM trees. The types
of possible nodes are: element, attribute, text,
namespace, processing instruction etc.
The XQuery language is suitable both for
structure queries and for content queries. A
XQuery query can iterate over the document tree
and retrieve nodes with a specified property,
perceive the hierarchy relationships between
nodes, perform semijoin or combine data from
multiple documents. Furthermore, it is possible
that the result of a query to be input for another
one, like in pipeline systems.
The expressions are evaluated depending on a
context node or atomic value.
Like in a template processor, a query can
contain both element constructions and XQuery
expressions. The curly braces insert an XQuery
expression in an element constructor.
The main capability of the XQuery language is
given by FLWOR (For-Let-Where-Order-
Return) expressions, which is similar to SQL
select-from-having-where.

• For constructs a list of bindings of a
variable with values.

• Let associates a list of values to a
variable.

• Where sets a filter for the list specified in
a for construction.

• Order-by specifies a sort criterion for the
list established in a for construction.

• Return inserts for each list item an
element constructor in the result.

Several use cases and requirements indicate the
XQuery ability to query without schema
knowledge, to operate on hierarchy, to transform
input structures and create new structures and to
preserve the initial order and hierarchy of nodes.

Querying Web documents

Querying Web pages is a very useful issue
because a local search engine can use the
information retrieved. Also, another software
module can process the obtained data for
different purposes such as statistical ones.
Let us consider a scenario in which researches of
a university have published on Web their
curriculum vitae (resume). A query might
extract all titles of articles written in the last two
years or the number of books for each
researcher.
There are two kinds of basic queries on Web
pages: structure and content queries. These two
types can be mixed into a third type, which is
hybrid query.
A simple structure query can be:

<keywords>
{
let $site := document(
 “http://www.infoiasi.ro/book.html”)
for $bold in distinct-values($site//b)
 order-by $bold/text()
 return <kw>{$bold/text()}</kw>
}
</keywords>

The above query constructs a part of an XML
document, which contains a list of strings
appearing in bold format in the HTML source.
In this paper we choose the XML format for the
results of queries because it is more general and
can be used by other applications or published in
HTML format via a XSL transformation.
A simple content query is:

<appearances>
{
let $site := document(
 “http://www.infoiasi.ro/book.html”)
for $v in $site/html/body//*
 where contains($v/text(),
 “Web programming”)
 return <ap>{$v/text()}</ap>
}
</appearances>

This query performs a keyword search in the
body section of the specified HTML document.
The context in which the keyword appears is
returned.

 350

Another example we give is a hybrid one that
traverses the links in a document.

<images>
{
let $d := document(
 “http://www.uaic.ro/book17/toc.html”)
for $a in $d//a
 where contains($a/text(),”chapter”)
 let $i := document($a/@href)//img
 return
 <chapter imgs=”{count($i)}”>
 {$a/text()}
 </chapter>
}
</images>

This query iterates over the table of content of a
book and for each chapter counts the number of
images.
Here is another example of query, which
recursively traverses documents in a Web site to
search a specific string in first three paragraphs.
In order to achieve that we define a recursive
function that follows the links from the start
page.

define function traverse(
 $e as xs:element) as xs:anyType
{
 let $l1 := for $p in $e//p[
 position() < 3]
 where fn:contains($p/text(),
 “Web programming”)
 return $p

 let $l2 := for $a in $e//a
 return traverse(document($a/@href))

 return $l1, $l2
}

<results>
{
 traverse(
 “document(http://www.uaic.ro/)”)
}
</results>

The function traverse iterates over the first three
p elements and retains in a list the elements that
contain the string “Web programming”. After
that it extracts all links and for each of them
makes a recursive call. The results of the

recursive calls are then concatenated and
returned.
We notice that, in order to retrieve elements
with a certain property from an entire site, we
have to define recursive functions which
effectively implement this traverse. It would be
easier to have an embedded mechanism for
recursive processing.
We can easily observe that our traversal function
doesn’t check if there are loops or if it visits a
document twice.

Proposal for XQuery extension

We propose a better way to refer documents
from Internet using patterns for URLs. Also, we
propose an extension from the node references
to file systems. Some examples are bellow:

document(
”http://www.infoiasi.ro/book19/*.html”)
//p[align=”justify”]

Select all paragraphs that are align justify from
the HTML documents located in book19
directory.

document(
”http://www.uaic.ro/~stanasa//*.html”)
/h1

Select all heading 1 elements from HTML
documents that are published by stanasa user.
If the www.infoiasi.ro is stored on the local
machine, the list of HTML documents can be
obtained from local file system. Otherwise we
can invoke queries for search engines in order to
get the initial list of HTML documents. The
final list will be obtained by recursively
processing the HTML documents from initial
list.
Using the proposed patterns it is easier to extract
data recursively. The XQuery code becomes
shorter and we do not have to define recursive
functions or implement algorithms for graph
crossing. This can be done in XQuery
implementation.
A more complex example can be:
document(“http://*.info.uaic.ro”)
//*.xml

 351

This expression selects all XML documents
from sites having the suffix info.uaic.ro, such as
vidar.info.uaic.ro, thor.info.uaic.ro,
www.info.uaic.ro.
A site can be indicated by the IP address. So, we
can also use patterns for IP addresses:

document(
 “ftp://193.231.30.*/pub//stud?.xsl”)
 //xsl:value-of

In this example we use another protocol than
HTTP, and apply the “?” wildcard, which
substitutes only one character.

Conclusions

XQuery provides support for advanced local and
world wide search. The search can be done
depending on the structure of the documents.
We can extract different information from a lot
of locations from the entire Internet, using
protocols such as HTTP and FTP. So, we can
easily make reports based on distributed data
from intranet/extranet.
The XML output facilitates creation of particular
Web services. We can offer query results for
Web or standalone applications using SOAP
([10]). A HTML document can be obtained via a
XSL transformation.

Using patterns for URLs and the extension
discussed above, the XQuery code becomes
shorter and easier to write.

Future work

First we plan to implement the support for the
extension of XQuery discussed in this paper.
Also, we plan to develop a Web application for
data extraction from local file system and from
an intranet. After that we can extend this
application to the entire Internet.

References

[1] W3C, XML Home Page,
http://www.w3.org/xml
[2] W3C, XHTML Home Page,
http://www.w3.org/TR/xhtml1
[3] W3C, HTML Home Page,
http://w3.org/MarkUp
[4] Tidy Home Page, http://tidy.sourceforge.net
[5] W3C, http://www.w3.org
[6] W3C, XQuery-An XML Query Language,
http://www.w3.org/TR/XQuery
[7] Tamino Server Home Page,
http://www.softwareag.com/tamino
[8] QEXO Home Page, http://www.qexo.org
[9] Galax, http://db.bell-labs.com/galax
[10]SOAP, http://w3.org/TR/SOAP

 352

	QUERYING WEB DOCUMENTS TO RETRIEVE DISTRIBUTED DATA
	
	Introduction
	XQuery - a language for querying web pages
	Querying Web documents
	Proposal for XQuery extension
	Conclusions
	Future work

	References

