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Abstract. Theoretical models for dielectric materials were used to obtain their equivalent electrical circuits 
having frequency responses similar with the electric permittivity frequency behavior. A graduate evolution of 
the equivalent circuits was included here, considering that theoretical models for dielectric material were 
describing more of the inside processes. The time response of the equivalent circuit, ended on a load impedance, 
can be used for studying the dielectric filled capacitor behavior in an electronic circuit.         
Keywords: Debye dielectric, dielectric with resonant absorptions, model, equivalent circuit, dielectric 
permittivity, frequency and time response.   
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For some categories of dielectric materials, one 
can model the frequency behavior of the 
complex electric permittivity, ( )ε ω , using an 
equivalent electric RLC circuit. Determination 
of equivalent circuit parameters was done 
considering the expression of the complex 
permittivity for each dielectric category.  
We will start with the Debye dielectric category, 
for which we have the complex permittivity 
given by ([1, 4]): 
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where , ( )ε ε ω∞ = →∞ (s 0ε ε ω )= = , also the 
stationary field value and Dτ  is the Debye 
dielectric relaxation time. 
An ideal capacitor, with C = 1 F, filled with a 
Debye dielectric, has an impedance of 

( )
1

ωε ω
Ω . Because ( )ε ω  is a complex 

quantity, this impedance can be modeled by a 
capacitance ( )C 'ε ω= F parallel with a 

resistance 
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. Of course, this is not 

the only possibility and other equivalent circuits, 
with the same equivalent impedance can be 
found.      
If we work in the same manner, we can find the 
equivalent circuit modeling the relation (1), as is 
shown in figure 1 ([4]):  
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Fig. 1. The equivalent circuit modeling the 
relation (1), excited by a signal source and 

ended on a load impedance. 

These circuit impedances are computed for 
distilled water, at normal pressure and 
temperature, (which can be well approximated 
as a   Debye dielectric), with a proper value for 
C0. The equivalent circuit is excited by a signal 
source, with variable frequency and ends on a 
proper load impedance. This simple circuit 
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allows us to analyze the ( )ε ω  frequency 
behavior, which is the same as the circuit 
frequency response.  

The real dielectrics behave more complicated, 
especially at frequencies from optical range, 
where the resonant absorptions appear ([2, 3, 
5]). In these cases, we can write the complex 
electric permittivity as (Born and Wolf): 
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where 0ω  is the resonance frequency and γ  is 
attenuation constant of an electromagnetic field 
in the material. 
The equivalent circuit for relation (2) is given in 
figure 2, ([4]), and consists of the group of 
impedances: 
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Fig. 2. The equivalent circuit modeling the 
relation (2), excited by a signal source and 

ended on a load impedance. 

At the resonance frequency, ( )( 0'ε ω ε∞−  
vanishes and the losses are maximal in the 

material: s

0

" ε εε
ω γ

∞−
= . The inductance L 

models the inertial effects of the elementary 
dipoles orientation in the applied filed. All 
impedances are computed here for paraffin 

(C25H52(s)), with a proper C0. 

More complicated resonant absorptions can be 
described by (van Vleck and Weisskopf): 
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which can be modeled by equivalent circuit ([4]) 
consisting of the group of impedances: 
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given in figure 3, computed here for glycerin 
(1,2,3 propantryol – C3H8O3).                           

Fig. 3. The equivalent circuit modeling the 
relation (3), excited by a signal source and 

ended on a load impedance. 

One remarks that the relation (3) reduces to 
relation Debye, (1), for very high frequencies, 
beyond the resonances range, 0ω ω . 



Frequency and time responses of the 
equivalent circuit 

For the dielectrics in the categories considered 
above, frequency evolution of the electric 
permittivity is given by the frequency response 
of the equivalent circuit.  
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We will give, for comparison, the frequency 
response of the equivalent circuit for ideal 
dielectric. Permittivity evolution is a classical 
one, as can be observed in figure 4 (the curve 
falls down with constant slope). The permittivity 
values are given in arbitrary units.  

           Frequency
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Fig.4. Frequency evolution of an ideal dielectric 
permittivity, obtained with the equivalent 

circuit. 

Permittivity for the Debye dielectric has the 
frequency evolution presented in figure 5.  

           Frequency
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Fig. 5. Electric permittivity versus frequency, 
for a Debye dielectric, obtained with the 

equivalent circuit. 

For dielectrics with resonant absorptions, 
frequency behavior of permittivities described 
by relations (2) and (3) are obtained, using the 
equivalent circuits, as follows (figures 6, 
respectively 7). 
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Fig. 6. Electric permittivity (Born and Wolf) 
versus frequency, for a dielectric with resonant 

absorptions, obtained with the equivalent circuit. 
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Fig. 7. Electric permittivity (van Vleck and 
Weisskopf) versus frequency, for a dielectric 
with resonant absorptions, obtained with the 

equivalent circuit. 

One observes that the permittivity evolution 
differs of that for the ideal dielectric and a very 
high frequency evolution starts to appear. If we 
extract from literature the frequency of an 
resonant permittivity peak for our epoxy resin, 
the resonance appears clearly in the last model 
(van Vleck and Weisskopf) equivalent circuit 
response. 
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If we consider now the equivalent circuits 
excited by a pulse generator, we can study the 
pulse deformation on an R, C parallel circuit,  

where the capacitor is dielectric filled. For the 
categories of dielectrics modeled above, we 
obtained the time responses given in figure 8.
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Fig. 8. Time response of an R, C parallel circuit,  
with the capacitor filled with dielectric differently modeled. 

One can observe that the classical R, C filter 
behavior is modified by the nature of dielectric 
which fills the capacitor. The inner real 
dielectric determinates an increase of the rising 
time of the circuit response and a slow 
decreasing of it. The equivalent circuit for Born 
and Wolf modeled dielectric gives a time 
response which approximates better the reality 
than the circuit for van Vleck and Weisskopf 
modeling, even the curve amplitude is to high. A 
van Vleck and Weisskopf modeling gives a time 
response of the dielectric filled capacitor in 
which pulse is strongly flattened and the 
decrease imposed by the capacitor is no 
illustrated.  

Conclusions 

A real dielectric which fills a capacitor can be 
differently modeled, pursuing a more fare 
description of its complex electric permittivity. 
The Debye model gives circuit responses close 
to these corresponding to the ideal dielectric 
model. It is not relevant. 

The equivalent circuit for Born and Wolf 
modeled dielectric gives a not so fare frequency 
response and it is preferable a van Vleck and 
Weisskopf modeling for a better resonant 
absorption representation. But, a van Vleck and 
Weisskopf modeling gives an inadequate time 
response of the dielectric filled capacitor and 
consequently it is no indicated in time analysis.  
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