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Abstract. This paper presents two systematic methods for solving dc Linear Electric Circuits (LECs): Nodal 
Analysis with Virtual Current Sources (NA-VCS), applicable to planar or nonplanar LECs and Mesh Analysis 
with Virtual Voltage Sources (MA-VVS), applicable to planar LECs only. 
To apply these methods, the nonconvertible voltage or current sources (independent and dependent) are re-
placed by Virtual Current or Voltage Sources (VCS, VVS), respectively. Solving any dc LEC in this way is ex-
tremely systematic and straightforward, since most of the work is done by inspection and some of the matrix 
manipulations required are easily implemented. Since the proposed methods are well algorithmized, they can by 
used in most modern simulators of analog networks. 
Keywords: dc LEC, inspection, mesh analysis, nodal analysis, nonconvertible current source, nonconvertible 
voltage source, virtual current source, virtual voltage source. 

 
I.   Introduction 
 
Many introductory electric circuit textbooks  
[1]–[10] provide two powerful methods for solv-
ing electric circuits: nodal analysis, which is 
based on a systematic application of Kirchhoff’s 
Current Law (KCL), and mesh analysis, which 
is based on a systematic application of 
Kirchhoff’s Voltage Law (KVL).These methods 
are easy and systematic for circuits that contain 
only independent current (voltage) sources (ICS, 
IVS).  
The difficulty of these methods starts when the 
circuit contains also dependent voltage (current) 
sources (DVS, DCS) and when there are voltage 
(current) sources (IVS, DVS, ICS, DCS) which 
are not transformable to current (voltage) 
sources. In Section II, these sources are referred 
to as Nonconvertible Independent Voltage 
Sources (NCIVS), Nonconvertible Dependent 
Voltage Sources (NCDVS), Nonconvertible In-
dependent Current Sources (NCICS) and Non-
convertible Dependent Current Sources 
(NCDCS), respectively. 

These difficulties are removed by the method 
presented by J. G. Gottling [11], who shows 
how to write nodal (mesh) analysis matrix equa-
tions for a linear circuit by inspection and de-
rives a general matrix solution for the node volt-
age (mesh current) vector.  
Also, these difficulties and known limitations of 
classical nodal and mesh methods are removed 
by the MNA method presented by C. W. Ho et 
al [12], which is well suited both to symbolic 
and numerical analysis of complex circuits using 
modern matrix-based software. 
This paper presents systematic methods for solv-
ing dc LECs by the NA-VCS or MA-VVS, 
which as the Gottling method and MNA method, 
remove the above mentioned limitations.  

 
II. Methods Description 
 
A. NA-VCS method 
The building elements of a dc LEC are given in 
Table 1. 
To apply Nodal Analysis, where the necessary 
condition is that all sources must be current 



sources, the concept of the Virtual Current 
Source (VCS) is introduced. That is, in place of 
Nonconvertible Independent Voltage Sources 
(NCIVS) or of Nonconvertible Dependent Volt-
age Sources (NCDVS), Virtual Current Sources 
(VCS) are considered with current values equal 
to the currents through these voltage sources. 
The NCIVSs and the NCDVSs, are replaced by 
the VCSs with the notation , 
and , respectively. 

2i r, ... 1,i  ,)ncivs( =∗

2i s, ... 1,i  ,)ncdvs( =∗

Next, defining the reference node and labeling 
the rest nodes, by inspection nodal analysis 
gives: 

)1(
1mmk1k1kkk ××××× ⋅==⋅ SWivG          (1) 

where is the conductance matrix and  
the node voltage vector. Matrix  and vec-
tor are given in Appendix A. 

kk×G 1k×v

mk×W
)1(
1m×S

 
Table 1. Building elements of a dc LEC 
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SOURCES 

Kind No. Notation 
ICS 1r  

1r1 )ics( ..., ,)ics(  

DCS 1s  
1s1 )dcs( ..., ,)dcs(  

NCIVS 2r  
2r1 )ncivs( ..., ,)ncivs(  

NCDVS 2s  
2s1 )ncdvs( ..., ,)ncdvs(  

OTHER ELEMENTS 

Resistances 

OTHER DETAILS 

• : Total No. of indep. sources  21 rrr +=
• : Total No. of dep. sources 21 sss +=
• srm +=  :  Total No. of sources 
• : No.  of nodes (besides the ref. node) k

 
But all voltage sources replaced by VCSs can be 
expressed as a linear combination of the node 
voltages through the matrix equation 

)2(
1mm)sr(1kk)sr( 2222 ××+××+ ⋅=⋅ SZvF          (2) 

where, each row of the F matrix describes one 
of the voltage sources  as  a  function  of  the  
node  

voltages. Therefore, the F matrix elements are -
1, 1 or 0. Matrix  and vector  are 
given in Appendix A. 

m)sr( 22 ×+Z )2(
1m×S

Combining equations (1) and (2), a new matrix 
equation comes up, where the first 22 sr +  equa-
tions are the equations given by (2) and the rest 

)sr(k 22 +−  equations are obtained from (1). 
These equations are obtained following one of 
the next two cases: 
• case a) unchanged, if all the VCS coeffi-

cients in matrix W are zero, or 
• case b) after appropriate additions or sub-

tractions of the equations of (1) aiming to the 
elimination of all the VCSs, if the conditions 
of case a) are not valid. 

Thus, an equivalent set of equations of the fol-
lowing form is obtained 

)2(
1mmk1kkk ×××× ⋅=⋅ STvD                (3) 

where  and  are matrices given in Ap-
pendix A. 

kk×D mk×T

However, since the dependent sources are ex-
pressed as functions of the node voltages, one 
may write 

1kks
)3(
1s ××× ⋅= vXS                    (4) 

where is a matrix whose elements describe 
the values of the dependent sources as functions 
of the node voltages of the whole circuit. Vector 

 is given in Appendix A. 

ks×X

)3(
1s×S

Based on (4), matrix equation (3) is rearranged 
as follows: 

)4(
1rrk1kkk ×××× ⋅=⋅ STTvDD               (5) 

Vector , and matrices ,  are 
given in Appendix A. 

)4(
1r×S kk×DD rk×TT

Finally, based on (5), the node voltage vector is   
 

)4(
1rrk

1
kk1k ××

−
×× ⋅⋅= STTDDv               (6) 

The voltages of all branches are calculated com-
bining the node voltages. As a consequence, the 
currents of all circuit elements are known, ex-
cept those flowing through the NCVSs. These 
currents are calculated from the proper set of 
equations contained in (1). These equations are 
obtained following one of the next two cases: 



• case i) unchanged, if the coefficients 
 and 2)jsr(i 1,...rj  , w

11
=++ 2)jsr(i 1,...sj  , w

1
=++  

for , are all zero except one, or consti =
• case ii) after appropriate additions or sub-

tractions of the equations of (1) aiming to the 
elimination of all the VCSs except one, if the 
conditions of case i) are not valid. 

In other words, the solution of the dc LEC is 
completed and then the dc power conservation is 
easy to prove, if required. 

 Example 
As an example, we proceed to determine the 
node voltages and the currents flowing through 
the NCVSs for the dc LEC shown in Figure 1. 
Applying the NA-VCS method, we replace the 
nonconvertible voltage sources  by 

virtual current sources . Next, defining 
the reference node and labeling the rest of the 
nodes as a, b, c, d, e, f, the equivalent circuit 
takes the form shown in Figure 2. 

ϕv3,v,v
54 ss

∗∗∗
321 i,i,i

+
-

+

+
-

-

ϕi5

A5i
1s = Δi

ϕv3
Ω1Ω1

Ω1

V50v
4s =

V10v
5s = Ω1

ϕi

Δi2+

-ϕv

A8i
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A10i
2s =
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Fig.1. dc LEC for the example 
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Fig.2. Equivalent circuit for the dc LEC of Fig.1 
 
Since  and 6k  , 1s  , 2s  , 2r  , 3r 2121 =====

[ ]T321sss
)1( iiii5i2iii

321

∗∗∗
ϕΔ=S  

[ ]Tsssss
)2( v3vvi5i2iii

54321 ϕϕΔ=S

[ ]T)3( v3i5i2 ϕϕΔ=S  

[ ]
[ ]T

T
sssss

)4(

V10V50A8A10A5

vviii
54321

=

==S
 

the following matrices are determined by in-
spection 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−
−−
−−

=

100000
021000
011000
000211
000121
000112

G
 

∗
∗∗
∗∗∗
∗∗
∗∗

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−−−

=

00110001
00001

10000100
11100

01010
11000010

000

000
000

W
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=

001001
000001
100000

F
   

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10000000
01000000
00100000

Z
 

Next, the matrices D and T involved in (3) are 
obtained by inspection as follows: 
• The first three rows of D and T are the rows 

of F and Z respectively, and 
• The last three rows of D and T are the 2nd, 

3rd and 5th rows of G and W respectively, 
because the VCS coefficients in matrix W 
are zero (Sec. II, A, case a), indicated by ** 
sign in matrix W. 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−
−

=

021000
000211
000121
001001
000001
100000

D

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

00000001
00011100
00001010
10000000
01000000
00100000

T

 

 
Next, the matrix  involved in (4), is obtained 
by inspection 

X

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

300000
000550
022000

X
 

 
Thus, matrices DD and TT are obtained  

266 



⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−−

−−−
−−

−

=

021000
022341
022121
301001

000001
100000

DD
   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

00001
00100
00010
00000
10000
01000

TT
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Next, by simple matrix manipulations (multipli-
cation and inversion) the node voltage vector, 
associated with eq. (6), comes up 

[ ]TV50V5,72V140V423V279V10−=v
In order to find the currents flowing through the 
nonconvertible voltage sources, the following 
are considered: 

Since the coefficients  , 0 w, 0w 6,87,6 ==  
 (Sec. II, A, case i), indicated by * 

sign in the W matrix of the example, from the 
6

0  wand 6,6 ≠

th row of G and W, it is derived 
A 775ii1i51i1v1 11sf 1

=⇒⋅+⋅+⋅−=⋅ ∗∗
ϕ  

Since the coefficients  , 0 w, 0w 4,76,4 ==  
 (Sec. II, A, case i), indicated by 

*** sign in the W matrix of the example, from 
the 4

0  wand 4,8 ≠

th row of G and W, it is derived 
A 5,59ii1i1v1v1 33sed 3

=⇒⋅+⋅=⋅−⋅ ∗∗  

By adding the 1st and 4th row of G and W re-
spectively, since in this way all VCSs are elimi-
nated except one (Sec. II, A, case ii)), it is de-
rived 

A 5,652ii1i1i1

v1v1v1v1v2

22ss

edcba

32
=⇒⋅−⋅+⋅−=

=⋅−⋅+⋅−⋅−⋅
∗∗  

 
B. MA-VVS method 
The building elements of a planar dc LEC are 
given in Table 2. 
To apply Mesh Analysis, where the necessary 
condition is that all sources must be voltage 
sources, the concept of the Virtual Voltage 
Source (VVS) is introduced. That is, in place of  
NCICSs or of  NCDCSs, VVSs are considered 
with voltage values equal to the voltages across 
these current sources.  
The NCICSs and the NCDCSs, are replaced by 
the VVSs with the notation , 
and , respectively. 

2i r, ... 1,i  ,)ncics( =∗

2i s, ... 1,i  ,)ncdcs( =∗

Next, defining the mesh currents in the same 
direction (clockwise or counter clockwise) for 
symmetry reasons, by inspection mesh analysis 
gives: 
 
Table 2. Building elements of a planar dc LEC 

SOURCES 

Kind No. Notation 
IVS 1r  

1r1 )ivs( ..., ,)ivs(  

DVS 1s  
1s1 )dvs( ..., ,)dvs(  

NCICS 2r  
2r1 )ncics( ..., ,)ncics(  

NCDCS 2s  
2s1 )ncdcs( ..., ,)ncdcs(  

OTHER ELEMENTS 

Resistances 

OTHER DETAILS 

• 21 rrr += :  Total No. of indep. sources  
• 21 sss += : Total No.of dep.  sources 
• srm +=  :  Total No. of sources 
•  :  No. of meshes k

 
)1(
1mmk1k1kkk ××××× ⋅==⋅ PQviR            (7) 

where is the resistance matrix and  the 
mesh current vector. Matrix  and vector 

 are given in Appendix B. 

kk×R 1k×i

mk×Q
)1(
1m×P

But all current sources replaced by VVSs can be 
expressed as a linear combination of the mesh 
currents through the matrix equation 

          (8) )2(
1mm)sr(1kk)sr( 2222 ××+××+ ⋅=⋅ PLiN

where, each row of the N matrix describes one 
of the current sources as a function of the mesh 
currents. Therefore, the N matrix elements are -
1, 1 or 0. Matrix  and vector  are 
given in Appendix B. 

m)sr( 22 ×+L )2(
1m×P

Combining equations (7) and (8), a new matrix 
equation comes up, where the first 22 sr +  equa-
tions are the equations given by (8) and the rest 

)sr(k 22 +−  equations are obtained from (7). 
These equations are obtained following one of 
the next two cases 
• case a) unchanged, if all the VVS coeffi-



cients in matrix Q are zero, or 
• case b) after appropriate additions or sub-

tractions of the equations of (7) aiming to the 
elimination of all the VVSs, if the conditions 
of case a) are not valid. 

Thus, an equivalent set of equations of the fol-
lowing form is obtained 

)2(
1mmk1kkk ×××× ⋅=⋅ PYiC                 (9) 

where  and  are matrices given in Ap-
pendix B. 

kk×C mk×Y

However, since the dependent sources are ex-
pressed as functions of the mesh currents, one 
may write 

1kks
)3(

1s ××× ⋅= iAP                    (10) 
where is a matrix whose elements describe 
the values of the dependent sources as functions 
of the mesh currents of the whole circuit. Vector 

 is given in Appendix B. 

ks×A

)3(
1s×P

Based on (10), the matrix equation (9) is rear-
ranged as follows: 

)4(
1rrk1kkk ×××× ⋅=⋅ PYYiCC            (11) 

Vector , and matrices  are 
given in Appendix B. 

)4(
1r×P rkkk   ×× YYCC

Finally, based on (11), the mesh current vector 
is   

)4(
1rrk

1
kk1k ××

−
×× ⋅⋅= PYYCCi            (12) 

The currents of all branches are calculated com-
bining the mesh currents. As a consequence, the 
voltages of all circuit elements are known, ex-
cept those at the terminals of the Nonconvertible 
Current Sources (NCCS). These voltages are 
calculated from the proper set of equations con-
tained in (7). These equations are obtained fol-
lowing one of the next two cases: 
• case i) unchanged, if the coefficients 

 and 2)jsr(i 1,...rj  , q
11

=++ 2)jsr(i 1,...sj  , q
1

=++  
for , are all zero except one, or consti =

• case ii) after appropriate additions or sub-
tractions of the equations of (7) aiming to the 
elimination of all the VVSs except one, if the 
conditions of case i) are not valid. 

In other words, the solution of the planar dc 
LEC is completed and then the dc power con-
servation is easy to prove, if required. 
Example 

As an example, we proceed to determine the 
mesh currents and the voltages across the 
NCCSs for the planar dc LEC shown in Figure 
3. 

xv5 Ω1

Δi2

Ω1

Ω1

+ -

+ -
Ω1 xi2

+
-V20v

1s =

+
-

Ω1

Ω1

V50v
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Δi Ω1

A5i
3s =

-

+ xv

 
Fig.3. Planar dc LEC for the example 

 

Applying MA-VVS, we replace the nonconvert-
ible current sources  by virtual voltage 

sources . Next, defining the mesh currents 
in the same direction (clockwise or counter 
clockwise), the equivalent circuit takes the form 
shown in Figure 4. 

Δi2 ,i
3s

∗∗
21 v,v

xv5 Ω1

Δi2

Ω1

Ω1

+ -

+ -
Ω1 xi2

+
-V20v

1s =

+
-

Ω1

Ω1

V50v
2s =

xi
Δi Ω1

A5i
3s =

-

+ xv

5i

3i

4i

2i

1i

+

-

∗
2v

+

-

∗
1v

 
Fig.4. Equivalent circuit for the planar dc LEC 

of Fig. 3 
 

Since  5k  , 1s  , 2s  , 1r  , 2r 2121 =====  and 

[ ]T21xxss
)1( vvv5i2vv

21

∗∗=P   

[ ]Tsxxss
)2( i2iv5i2vv

321 Δ=P  

[ ]Txx
)3( i2v5i2 Δ=P   

[ ] [ ]TT
sss

)3( A5V50V20ivv
321

==P  
the following matrices are determined by in-
spection 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−
−−

−

=

20100
02100
11310

00121
00012

R
  

∗
∗∗∗
∗∗∗

∗
∗∗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−=

1
1

1
1
00

Q

01000
00100
00010

00010
0001
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

10010
01100

N    
⎥
⎦

⎤
⎢
⎣

⎡
=

100000
010000

L  

Next, matrices C and Y involved in (9) are ob-
tained by inspection as follows: 
• The first two rows of C and Y are the rows 

of N and L respectively, and 
• The 3rd row of C and Y is the 1st row of N 

and L respectively, because the VVS coeffi-
cients in matrix Q are zero (Sec. II, B, case 
a), indicated by ** sign in matrix Q. 

• The 4th row of C and Y comes up by adding 
the 2nd and 5th row of N and L respectively, 
because this way the VVSs are eliminated 
(Sec. II, B, case b), indicated by * sign in 
matrix Q. 

• The 5th row of C and Y comes up by adding 
the 3rd and 4th row of N and L respectively, 
because this way the VVSs are eliminated 
(Sec. II, B, case b), indicated by***sign in 
matrix Q. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−

−

=

11210
20221
00012
10010

01100

C
   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

000110
001010
000001
100000
010000

Y
 

Next, matrix A involved in (10), is obtained by 
inspection 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

00220
50500

00022
A

 

Thus, matrices CC and YY are obtained. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
−−

−

=

11232
30321

00012
10210

01100

CC
   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

010
010
001
000
100

YY
  

Next, by simple matrix manipulations (multipli-
cation and inversion) the mesh current vector, 
associated with eq. (12), comes up 

[ TA220A160A155A90A35 −−−−−=i
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]
In order to find the voltages across the noncon-
vertible current sources, the following are con-
sidered: 
Since the coefficients 0q  and  , 0q 3,65,3 =≠  (as 
described in Sec. II, B, case i)), from the 3rd row 
of R and Q, it is derived 

V55vv1v1

i1i1i3i1

11s

5432

2
=⇒⋅+⋅−=

=⋅−⋅−⋅+⋅−
∗∗  

Since the coefficients 0q  and  , 0q 2,65,2 ≠=  (as 
described in Sec. II, B, case i)), from the 2nd row 
of R and Q, it is derived 

V40vv1v1

i1i2i1

22s

321

2
−=⇒⋅+⋅=

=⋅−⋅+⋅−
∗∗  

 
Conclusions 
 
Systematic methods for obtaining the node volt-
age (mesh current) vector for dc LECs are pre-
sented. These methods (NA-VCS, MA-VVS) 
make it possible to treat any dc LEC (planar or 
nonplanar) in a similar straightforward way, re-
gardless of the circuit complexity.  
The NA-VCS (MA-VVS) has none of the limi-
tations of the basic nodal (mesh) analysis and it 
is well suited both to symbolic and numerical 
analysis of complex circuits. Furthermore, it 
minimizes significantly the work needed to ob-
tain the node voltage (mesh current) vector, 
since most of the matrices involved are found by 
inspection due to the use of virtual current (volt-
age) sources. Some matrix manipulations re-
quired are easily implemented using either cal-
culators that can treat large matrices or eco-
nomically reasonable math programs for per-
sonal computers. Also, the algorithm is easily 
formulated in the computer. 
Another equally important advantage of the use 
of virtual current (voltage) sources is the imme-
diate finding of the currents (voltages) through 
(across) the non-convertible voltage (current) 
sources. This is because the node voltages (mesh 
currents) are known, since their currents (volt-
ages) are already expressed by the way the equa-
tions are written in matrix form.  So the power 
developed by these sources is easily calculated 
and therefore the proof of the power balance 
does not present any difficulties. 
NA-VCS and MA-VVS methods can be obvi-
ously used for non-dc LECs (i.e. Laplace do-
main, sinusoidal steady state). Especially, for ac 
LECs, the necessary condition is that all circuit 
sources are of the same frequency (otherwise the 
principle of superposition is used).  Under this 



[6] Desoer, C.A & Kuh, E.S. (1969) Basic Cir-
cuit Theory, McGraw – Hill. 

condition, the NA-VCS and MA-VVS methods 
are applicable after the circuit transformation to 
the frequency domain. [7] Davis, A. (1998) Linear Circuit Analysis, 

Boston, MA: PWS. Finally, since the proposed methods are well 
algorithmized, they can by used in most modern 
simulators of analog networks. 

[8] Johnson, D.E., Johnson, J.R. & Hilburn, J.L. 
(1997) Electric Circuit Analysis, Englewood 
Cliffs, NJ: Prentice Hall.  
[9] Irwin, J.D. (1993) Basic Engineering Circuit 
Analysis, 4th ed. NY: Macmillan. 
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