
 9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 89

Abstract—Since the beginning of artificial intelligence,
programmers have been aiming to create the unbeatable
computer player. Most of the progress was done in classic
board games. For the majority, this task has been achieved,
like DEEP-BLUE for chess. For others, improvements still
need to be made. For example, Othello programmers are still
searching for the most efficient estimator model. A board game
programmer has two main tasks: to perform search tree
optimizations and to find an efficient evaluation function
(estimator). This paper is connected to the second task and its
goal is to present the steps that were made, in order to design
an appropriate estimator for the game “Nine Men’s Morris”.

Index Terms— estimator model, evaluation functions, game
tournament, genetic evolution

I. INTRODUCTION

Game artificial intelligence is one of several ways to

create the illusion of intelligent behaviors in machines.
Although the search tree algorithms go from the very simple
to the most complex, they all have a common key point, the
evaluation of possible configurations. In order to choose the
most appropriate move, an evaluation function is required,
in order to turn a table configuration into a relevant numeric
value. This function computes the value of each
configuration; therefore most of the game strategy lies
within it.

Human gamers use various strategies and follow certain
patterns depending on the game phase and the board
configuration. These patterns are of great help for those who
can turn them into an advantage. If the computer is not
aware of certain patterns, it can be fooled very easily even
by a non-experienced human player. It can play clever in
most of the situations but gets caught easy in others. The
algorithm doesn’t “see” further than the programmer tells it
to. A good game developer will know the game strategies
and will also know how to make the PC Player aware of
those strategies.

“Nine Men’s Morris” is a classic 2 player board game.
Although it is less complex and also less popular than chess,
it is a good example to experience the artificial intelligence
algorithms for game playing. After having developed a Java
“Nine Man’s Morris” game I am working on improving the
evaluation functions of the estimator, for the PC player.

Starting from an estimator model composed of three
weighted sum evaluation functions (one for each phase of
the game), I have used a competitive technique that submits
estimators to tournament, in order to find the best ones. For
the evolution of the estimators, a genetic crossover
algorithm is used.

The next section is an overview of the game application,
and the algorithms used. The third section presents the

estimator problems, decisions and the steps, to improve the
evaluation functions. Section four presents the conclusions.

II. THE APPLICATION

The game application is developed in Java, using OOP

techniques. The user can choose between 3 types of games
(human vs. human, human vs. PC and PC vs. PC). The user
can choose a profile for the PC Player, including the level,
play mode (Offence or Defense) and the algorithm used to
compute the moves. In the PC Player context, I made use of
two search algorithms: Alfa-Beta and one extension of this
algorithm, Minimal Window Search. The difference
between them consists in the way they perform the tree
search.

The algorithms generate the states’ tree from the current
position, on a certain number of levels (the depth of the
algorithm). When the last level is reached, each
configuration (each leaf) must be evaluated and is assigned a
value. The two players are seen as MAX and MIN. A
configuration of higher value is considered good for MAX,
and one of lower value is better for MIN. (This can be also
translated as positive value for MAX, and negative value for
MIN). In other words, MAX player will move towards
configurations of high value, while the MIN player will try
to go towards the lowest value ones.

A board configuration must be evaluated from both
players’ perspective. The idea is to compute, using the same
method, two estimators: one for MAX and one for MIN.
The final estimator will be computed as the substraction of
the two: TotalEst = Est_MAX – Est_MIN. If TotalEst is a
positive value it means that MAX has an advantage in that
configuration. If TotalEst is negative, the advantage is on
MIN’s side.

The estimator’s method of computation is crucial for the
success of the game.

III. THE ESTIMATOR

“Nine Men’s Morris” game has three important phases

(clearly delimited by the rules, but also by the techniques
and strategies used by players). In the first phase, players
alternatively place their pieces on the board. If a player
closes a morris he will grab an opponent’s piece. The way
the pieces are placed is crucial for the rest of the game. This
is why the experienced players, in this phase, concentrate
upon strategically placing the pieces rather than on closing a
morris. The second phase starts when all the pieces were
placed. Players move the pieces one step at a time, close
morrises and grab pieces. The best configuration is
considered to be the double morris. For each player, the

Nine Men’s Morris: Evaluation Functions
Simona-Alexandra PETCU, Stefan HOLBAN

Computer Science and Engineering, Politehnica University of Timisoara

 9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 90

third phase starts when he is left with only 3 pieces. Now he
must act very carefully, but the advantage of this phase is
that each of his pieces can be moved anywhere on the board
(not just one step as in phase 2).

1. Evaluation functions, relations and coefficients
One of the estimator structural decisions was to take in

consideration the phase of the game, for each player, when
computing the value for a table configuration. So, the
estimator is composed of three evaluation functions based
on weighted sum. Computing the value consists of analyzing
the current configuration, finding certain relations between
the pieces and give points. Each relation will have a
different weight (coefficient). For example, if a morris is
created (closed) when moving a piece, that configuration
will receive some extra 30 points, in comparison to a similar
configuration that does not have a closed morris. A closed
morris is one of the basic relations between pieces and must
be taken into consideration when evaluating the
configuration.

These relations are chosen on the basis of human players’
experience. They represent the relations and associations
that a human player would look for when playing this game.
So, they are based on the common knowledge of the game
and on strategies of expert human players.

Table 1. presents the relations chosen for the game. Each
game phase has its own set of relations, although some
relations were found relevant for more than one phase.

Table 1 – Game configuration relations.
Phase 1 relations Phase 2 relations Phase 3 relations
R1: Closed morris
R2: Morrises
number
R3: Number of
blocked opp. pieces
R4: Pieces number
R5: Number of 2
pieces
configurations
R6: Number of 3
pieces
configurations

R1: Closed morris
R2: Morrises
number
R3: Number of
blocked opp. pieces
R4: Pieces number
R5: Opened morris
R6: Double morris
R7: Winning
configuration

R1: 2 pieces
configurations
R2: 3 pieces
configurations
R3: Closed morris
R4: Winning
configuration

Most of the relations are clear and do not need further

explanations. The ones that might not be so suggestive are
described in the following lines. A “2 pieces configuration”
refers to having 2 pieces on one line (and the other place
empty, so morris possibility). A “3 pieces configuration”
offers the opportunity to close a morris in two places so the
opponent cannot stop you. These refer to the first stage
(placing pieces) and also to the final phase. “Closed morris”
refers to a new closed morris, that offers the advantage to
grab one opponent piece, while “morrises number” refers to
the total number of morrises one player has got.

Figure 1. shows the structure of the estimator, with an

evaluation function for each phase. Rx from phase k
represents Relation no. x from phase no. k (see table 1). Cfx
refers to the coefficient corresponding to Rx. In all three
phases we have a total of 17 relations therefore 17 different
coefficients.

Figure 1. Estimator model.

In order to compute the Est value for one player, the

program simply checks the game phase for that player and
applies the correspondent function.

When a configuration is generated, it is analyzed and we
will know exactly (for each player) how many morrises has
he got, how many pieces he has got left, and so on.

Let’s analyze, as a short example, the tree in Figure 2
with only a few states (table configurations):

Let’s suppose that the game is in the second stage and
“Square” is to move.

Figure 2. Configurations tree.

From the three presented moves, number [1] is a good
choice because it will prevent the opponent (“Circle”) from
closing a morris. Configuration [2] has a closed morris and
an opponent piece is grabbed. But, this advantage is
superficial, as in the next move “Circle” will probably close
his morris too, and obtain a piece in return. Number [3]
seems to be the best alternative for the moment. The morris
is closed, and by grabbing the right piece (one from the
opened morris), the opponent is also prevented from closing
a morris in the next move. All these logical appreciations
must be translated into functions and coefficients for the PC
Player.

For the basic version of the game, I developed two
Estimators: one for “Defense mode” and one for “Offence
mode”. In order to make the PC play better, the relations of
the functions remain unchanged, but the coefficients are

 9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 91

varied. I tuned the coefficients manually, based on trials.
Defense is based more on conserving the pieces and
blocking opponent’s pieces while Offence based more on
closing morrises and double morris structure. To be based
on certain relations translates into growing the coefficients’
value of those relations. To make a relation count less,
simply lower its coefficient or even give it the 0 value.

3.2 Choosing the coefficients
At first, choosing the coefficients for Defense and

Offence estimators was mostly done based on assumptions
and human vs. PC tests. But, the number of games that one
can play becomes irrelevant as there are so many possible
combinations. One logical way to get closer to a good
estimation function would be to let different estimators
compete with each other. At this point, we shall leave the
relations out, as they are computed for each configuration. If
one player closes a morris, the “closed morris” relation is set
from 0 to 1, if a piece is blocked, the “blocked pieces
counter” realtion is incremented and so on.

The discussion shall be made upon the coefficients. One
estimator must be a set of 17 coefficients (the total number
for all 3 stages). After a great number of games, we shall
have some “winner estimators” that are most likely to play
good also against a human player.

So, for this game, in order to find the most appropriate
estimator I have implemented a 2 stages “Tournament”,
shown in the workflow image below (Figure 3).

Figure 3. Estimator selection workflow.

I’ve started with 50 estimators (50 sets of 17 coefficients
each). There sets were generated randomly, but within
certain bounds. I used a function called generate(int a, int b)
that returns a random value between a and b.

For example for a winning configuration the coefficient
should be a random value between 900 and 1200, while for
a closed morris between 20 and 40. It should be even
smaller for a blocked opponent piece or for the number of
pieces.

In the tournament, each Ei!=Ej estimator plays 2 games:
Ei vs. Ej and Ej vs. Ei (because sometimes it is important
which player starts the game). The tournament had as input
a file containing all 50 sets, and the output consisted of one
file for each played match (containing info about the player
estimators, the winner and the moves list). After a
tournament of over 2000 games, the resulting files were
processed. Only about 75% of the games were useful
information, as the others ended up in a “Tie” (each game
was automatically stopped after 85 moves if no estimator
had won by then). Each estimator received 5 points/ each
game won. The output was a file containing the estimators
and scores in descending order. The best 10 were selected.

In order to make the estimators evolve, I applied a simple
one-crossover genetic algorithm, like in Figure 4, obtaining
another 40 combined estimators.

Figure 4. One point crossover.

In a genetic algorithm the population involved must have

a fitness function, showing the crossover capability for each
individual. Having to obtain 40 estimators from the best 10,
I choose the following structure: [(E0; 10), (E1; 7),(E2; 5),
(E3; 5), (E4; 4), (E5; 3), (E6; 2), (E7; 2), (E8; 1), (E9; 1)].
The list contains each estimator (E0 is the best) and the
number of crossovers it will take part in. This means that,
randomly, the estimator with the highest score (E0) will take
part in 10 crossovers; E1 will take be part in just 7, and so
on. The last, E9, will take part in only one exchange. The
participants to an information exchange (crossover) will be
randomly established, but in the certain bounds. For
example if E4 has already attended 4 crossovers, even if it is
randomly chosen again, it is not allowed to participate and
another estimator will be selected. These conditions are all
included in the genetic algorithm that generates the new
sets. The crossover point is another variable randomly
chosen, for each crossover.

All 50 (the best 10 plus the derived 40) were then again
submitted to a tournament, with the same procedures as the
first. This time, the ones with the best 3 scores were chosen
to be integrated in the game and to be tested in human vs.
PC games, to see if they are indeed efficient.

Table 1 presents the results. The best 4 estimators (the
third and forth have equal score, the same number of won
matches): E32 (crossover between E1 and E7), E34
(crossover between E1 and E2), E30(crossover between E1
and E4), and E46 (crossover between E3 and E7).

It is interesting to observe that the best configurations are
crossovers of E1, which is not the best estimator resulted
from the first tournament (E0), but the second best.

 9th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 22-24, 2008

 92

Table 2 – Coefficient sets of the best estimators.
 Phase 1 Phase 2 Phase 3
E32 18 26 1 6 12 7 14 43 10 8 7 42 1086 10 1 16 1190
E34 18 26 1 6 21 7 42 28 16 8 24 19 949 23 18 5 1096
E30 18 26 1 6 12 7 14 43 10 1 30 40 958 6 32 7 1041
E46 14 37 4 14 20 2 16 43 11 8 7 42 1086 10 1 16 1190

The first three estimators from the table share common

parts of the coefficients’ list. Those are inherited from E1.
At different points (crossover points) these estimators go on
different directions. E32 and E46 also have a common part
(towards the end of the sequence), from E7.

For an overall impression of the game design and
tournament, Figure 5. presents captures from a match, where
E0 (the best estimator from the first tournament) was beat
by E32 (the best estimator from the second tournament).

After the first phase (fig. 5a), the advantage is of E0’s
side (Player 1), having already grabbed an opponent piece.
But, as the game continues, they both manage to have two
morris structures (big. 5b). E32 (Player 2) manages to grab
more pieces from E0 and so, it manages to win the match
leaving the E0 with only two pieces on the board.

5a

5b

5c
Figure 5. Nine Men’s Morris Match.

IV. CONCLUSIONS

The resulting best estimators from PC vs. PC tournaments
are able to play good matches also against human players
and are better than the initial Defense and Offence
estimators, although these are not based on defense or
offense approaches.

Although E0 was the best estimator in the first
tournament, in the second one, the system has evolved
towards the E1 model. Many values and genetic algorithm
parameters were generated randomly, to obtain diversity.
There could be performed several experiments like this one,
the process of selection can be started over again for another
group of estimators, and another “family” will be obtained.
Combining the best estimators could lead to an even better
PC Player.

REFERENCES

[1] Bruno Bouzy, Tristan Cazenave, Computer Go: An AI oriented survey,

2000.
[2] Michael Bruno, Improving heuristic mini-max search
 by supervised learning, 2002
[3] Stuart Russel, Peter Norwig, Game Playing(pg.122-149), Artificial

Intelligence – A Modern Approach, Prentice Hall, 2003.
[4] Iordache Ciprian-Doru, Leonte Bogdan Nicolae, Ţîmpu Radu Cristian,

Teoria Jocurilor, 2002-2003.
[5] George F Luger, Artificial Intelligence – Structures an Strategies for

Complex Problem Solving, Fifth Edition, Addison-Wesley, 2005.
[6] Victor Aguirregabiria,Pedro Mira, A Genetic Algorithm for the

Structural Estimation of Games with Multiple Equilibria, 2005.
[7] Xavier Llora, Kumara Sastry, Frances Alias, David E. Goldberg,

Michael Welge, Analyzing Active Interactive Genetic Algorithms
using Visual Analytics, 2006.

