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Abstract—Since the beginning of artificial intelligence, 
programmers have been aiming to create the unbeatable 
computer player. Most of the progress was done in classic 
board games. For the majority, this task has been achieved, 
like DEEP-BLUE for chess. For others, improvements still 
need to be made. For example, Othello programmers are still 
searching for the most efficient estimator model. A board game 
programmer has two main tasks: to perform search tree 
optimizations and to find an efficient evaluation function 
(estimator). This paper is connected to the second task and its 
goal is to present the steps that were made, in order to design 
an appropriate estimator for the game “Nine Men’s Morris”.  
 

Index Terms— estimator model, evaluation functions, game 
tournament, genetic evolution 
 

I. INTRODUCTION 
 
Game artificial intelligence is one of several ways to 

create the illusion of intelligent behaviors in machines. 
Although the search tree algorithms go from the very simple 
to the most complex, they all have a common key point, the 
evaluation of possible configurations. In order to choose the 
most appropriate move, an evaluation function is required, 
in order to turn a table configuration into a relevant numeric 
value. This function computes the value of each 
configuration; therefore most of the game strategy lies 
within it.  

Human gamers use various strategies and follow certain 
patterns depending on the game phase and the board 
configuration. These patterns are of great help for those who 
can turn them into an advantage. If the computer is not 
aware of certain patterns, it can be fooled very easily even 
by a non-experienced human player. It can play clever in 
most of the situations but gets caught easy in others. The 
algorithm doesn’t “see” further than the programmer tells it 
to. A good game developer will know the game strategies 
and will also know how to make the PC Player aware of 
those strategies. 

“Nine Men’s Morris” is a classic 2 player board game. 
Although it is less complex and also less popular than chess, 
it is a good example to experience the artificial intelligence 
algorithms for game playing. After having developed a Java 
“Nine Man’s Morris” game I am working on improving the 
evaluation functions of the estimator, for the PC player.  

Starting from an estimator model composed of three 
weighted sum evaluation functions (one for each phase of 
the game), I have used a competitive technique that submits 
estimators to tournament, in order to find the best ones. For 
the evolution of the estimators, a genetic crossover 
algorithm is used. 

The next section is an overview of the game application, 
and the algorithms used. The third section presents the 

estimator problems, decisions and the steps, to improve the 
evaluation functions. Section four presents the conclusions. 

 
II. THE APPLICATION 
 
The game application is developed in Java, using OOP 

techniques. The user can choose between 3 types of games 
(human vs. human, human vs. PC and PC vs. PC). The user 
can choose a profile for the PC Player, including the level, 
play mode (Offence or Defense) and the algorithm used to 
compute the moves. In the PC Player context, I made use of 
two search algorithms: Alfa-Beta and one extension of this 
algorithm, Minimal Window Search. The difference 
between them consists in the way they perform the tree 
search.  

The algorithms generate the states’ tree from the current 
position, on a certain number of levels (the depth of the 
algorithm). When the last level is reached, each 
configuration (each leaf) must be evaluated and is assigned a 
value. The two players are seen as MAX and MIN. A 
configuration of higher value is considered good for MAX, 
and one of lower value is better for MIN. (This can be also 
translated as positive value for MAX, and negative value for 
MIN). In other words, MAX player will move towards 
configurations of high value, while the MIN player will try 
to go towards the lowest value ones. 

A board configuration must be evaluated from both 
players’ perspective. The idea is to compute, using the same 
method, two estimators: one for MAX and one for MIN. 
The final estimator will be computed as the substraction of 
the two: TotalEst = Est_MAX – Est_MIN. If TotalEst is a 
positive value it means that MAX has an advantage in that 
configuration. If TotalEst is negative, the advantage is on 
MIN’s side. 

The estimator’s method of computation is crucial for the 
success of the game. 

 
III. THE ESTIMATOR 
 
“Nine Men’s Morris” game has three important phases 

(clearly delimited by the rules, but also by the techniques 
and strategies used by players). In the first phase, players 
alternatively place their pieces on the board. If a player 
closes a morris he will grab an opponent’s piece. The way 
the pieces are placed is crucial for the rest of the game. This 
is why the experienced players, in this phase, concentrate 
upon strategically placing the pieces rather than on closing a 
morris. The second phase starts when all the pieces were 
placed. Players move the pieces one step at a time, close 
morrises and grab pieces. The best configuration is 
considered to be the double morris. For each player, the 
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third phase starts when he is left with only 3 pieces. Now he 
must act very carefully, but the advantage of this phase is 
that each of his pieces can be moved anywhere on the board 
(not just one step as in phase 2). 
 

1. Evaluation functions, relations and coefficients 
One of the estimator structural decisions was to take in 

consideration the phase of the game, for each player, when 
computing the value for a table configuration. So, the 
estimator is composed of three evaluation functions based 
on weighted sum. Computing the value consists of analyzing 
the current configuration, finding certain relations between 
the pieces and give points. Each relation will have a 
different weight (coefficient). For example, if a morris is 
created (closed) when moving a piece, that configuration 
will receive some extra 30 points, in comparison to a similar 
configuration that does not have a closed morris. A closed 
morris is one of the basic relations between pieces and must 
be taken into consideration when evaluating the 
configuration.  

These relations are chosen on the basis of human players’ 
experience. They represent the relations and associations 
that a human player would look for when playing this game. 
So, they are based on the common knowledge of the game 
and on strategies of expert human players. 

Table 1. presents the relations chosen for the game. Each 
game phase has its own set of relations, although some 
relations were found relevant for more than one phase. 

 
Table 1 – Game configuration relations. 
Phase 1 relations Phase 2 relations Phase 3 relations 
R1: Closed morris 
R2: Morrises 
number 
R3: Number of 
blocked opp. pieces 
R4: Pieces number 
R5: Number of 2 
pieces 
configurations 
R6: Number of 3 
pieces 
configurations 
 

R1: Closed  morris 
R2: Morrises 
number 
R3: Number of 
blocked opp. pieces 
R4: Pieces number 
R5: Opened morris 
R6: Double morris 
R7: Winning 
configuration 
 

R1: 2 pieces 
configurations 
R2: 3 pieces 
configurations 
R3: Closed morris 
R4: Winning 
configuration 
 

 
Most of the relations are clear and do not need further 

explanations. The ones that might not be so suggestive are 
described in the following lines. A “2 pieces configuration” 
refers to having 2 pieces on one line (and the other place 
empty, so morris possibility). A “3 pieces configuration” 
offers the opportunity to close a morris in two places so the 
opponent cannot stop you. These refer to the first stage 
(placing pieces) and also to the final phase. “Closed morris” 
refers to a new closed morris, that offers the advantage to 
grab one opponent piece, while “morrises number” refers to 
the total number of morrises one player has got. 

 
Figure 1. shows the structure of the estimator, with an 

evaluation function for each phase. Rx from phase k 
represents Relation no. x from phase no. k (see table 1). Cfx 
refers to the coefficient corresponding to Rx. In all three 
phases we have a total of 17 relations therefore 17 different 
coefficients. 

 
Figure 1.  Estimator model. 

 
In order to compute the Est value for one player, the 

program simply checks the game phase for that player and 
applies the correspondent function. 

When a configuration is generated, it is analyzed and we 
will know exactly (for each player) how many morrises has 
he got, how many pieces he has got left, and so on. 

Let’s analyze, as a short example, the tree in Figure 2 
with only a few states (table configurations): 

Let’s suppose that the game is in the second stage and 
“Square” is to move.  
 

 
Figure 2. Configurations  tree. 
 
From the three presented moves, number [1] is a good 
choice because it will prevent the opponent (“Circle”) from 
closing a morris. Configuration [2] has a closed morris and 
an opponent piece is grabbed. But, this advantage is 
superficial, as in the next move “Circle” will probably close 
his morris too, and obtain a piece in return. Number [3] 
seems to be the best alternative for the moment. The morris 
is closed, and by grabbing the right piece (one from the 
opened morris), the opponent is also prevented from closing 
a morris in the next move. All these logical appreciations 
must be translated into functions and coefficients for the PC 
Player.   
 

For the basic version of the game, I developed two 
Estimators: one for “Defense mode” and one for “Offence 
mode”. In order to make the PC play better, the relations of 
the functions remain unchanged, but the coefficients are 
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varied. I tuned the coefficients manually, based on trials. 
Defense is based more on conserving the pieces and 
blocking opponent’s pieces while Offence based more on 
closing morrises and double morris structure. To be based 
on certain relations translates into growing the coefficients’ 
value of those relations. To make a relation count less, 
simply lower its coefficient or even give it the 0 value. 

 
3.2 Choosing the coefficients 
At first, choosing the coefficients for Defense and 

Offence estimators was mostly done based on assumptions 
and human vs. PC tests. But, the number of games that one 
can play becomes irrelevant as there are so many possible 
combinations. One logical way to get closer to a good 
estimation function would be to let different estimators 
compete with each other. At this point, we shall leave the 
relations out, as they are computed for each configuration. If 
one player closes a morris, the “closed morris” relation is set 
from 0 to 1, if a piece is blocked, the “blocked pieces 
counter” realtion is incremented and so on.  

The discussion shall be made upon the coefficients. One 
estimator must be a set of 17 coefficients (the total number 
for all 3 stages). After a great number of games, we shall 
have some “winner estimators” that are most likely to play 
good also against a human player.  

So, for this game, in order to find the most appropriate 
estimator I have implemented a 2 stages “Tournament”, 
shown in the workflow image below (Figure 3). 

 
Figure 3. Estimator selection workflow. 
 
I’ve started with 50 estimators (50 sets of 17 coefficients 
each). There sets were generated randomly, but within 
certain bounds. I used a function called generate(int a, int b) 
that returns a random value between a and b. 

For example for a winning configuration the coefficient 
should be a random value between 900 and 1200, while for 
a closed morris between 20 and 40. It should be even 
smaller for a blocked opponent piece or for the number of 
pieces. 

In the tournament, each Ei!=Ej estimator plays 2 games: 
Ei vs. Ej and Ej vs. Ei (because sometimes it is important 
which player starts the game). The tournament had as input 
a file containing all 50 sets, and the output consisted of one 
file for each played match (containing info about the player 
estimators, the winner and the moves list). After a 
tournament of over 2000 games, the resulting files were 
processed. Only about 75% of the games were useful 
information, as the others ended up in a “Tie” (each game 
was automatically stopped after 85 moves if no estimator 
had won by then). Each estimator received 5 points/ each 
game won. The output was a file containing the estimators 
and scores in descending order. The best 10 were selected.  

In order to make the estimators evolve, I applied a simple 
one-crossover genetic algorithm, like in Figure 4, obtaining 
another 40 combined estimators.  

 

 
Figure 4. One point crossover. 

 
In a genetic algorithm the population involved must have 

a fitness function, showing the crossover capability for each 
individual. Having to obtain 40 estimators from the best 10, 
I choose the following structure: [(E0; 10), (E1; 7),(E2; 5), 
(E3; 5), (E4; 4), (E5; 3), (E6; 2), (E7; 2), (E8; 1), (E9; 1)]. 
The list contains each estimator (E0 is the best) and the 
number of crossovers it will take part in. This means that, 
randomly, the estimator with the highest score (E0) will take 
part in 10 crossovers; E1 will take be part in just 7, and so 
on. The last, E9, will take part in only one exchange. The 
participants to an information exchange (crossover) will be 
randomly established, but in the certain bounds. For 
example if E4 has already attended 4 crossovers, even if it is 
randomly chosen again, it is not allowed to participate and 
another estimator will be selected. These conditions are all 
included in the genetic algorithm that generates the new 
sets. The crossover point is another variable randomly 
chosen, for each crossover. 

All 50 (the best 10 plus the derived 40) were then again 
submitted to a tournament, with the same procedures as the 
first. This time, the ones with the best 3 scores were chosen 
to be integrated in the game and to be tested in human vs. 
PC games, to see if they are indeed efficient.  

Table 1 presents the results. The best 4 estimators (the 
third and forth have equal score, the same number of won 
matches): E32 (crossover between E1 and E7), E34 
(crossover between E1 and E2), E30(crossover between E1 
and E4),  and E46 (crossover between E3 and E7). 

It is interesting to observe that the best configurations are 
crossovers of E1, which is not the best estimator resulted 
from the first tournament (E0), but the second best. 
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Table 2 – Coefficient sets of the best estimators. 
   Phase 1    Phase 2    Phase 3 
E32 18  26  1  6  12  7  14  43  10  8   7  42  1086   10    1    16    1190 
E34 18  26  1  6  21  7  42  28  16 8  24  19    949   23   18    5     1096 
E30 18  26  1  6  12  7  14  43  10  1  30  40   958    6    32    7     1041 
E46 14  37  4 14  20  2  16  43  11  8   7  42  1086  10    1    16    1190 

 
The first three estimators from the table share common 

parts of the coefficients’ list. Those are inherited from E1. 
At different points (crossover points) these estimators go on 
different directions. E32 and E46 also have a common part 
(towards the end of the sequence), from E7. 

For an overall impression of the game design and 
tournament, Figure 5. presents captures from a match, where 
E0 (the best estimator from the first tournament) was beat 
by E32 (the best estimator from the second tournament). 

After the first phase (fig. 5a), the advantage is of E0’s 
side (Player 1), having already grabbed an opponent piece. 
But, as the game continues, they both manage to have two 
morris structures (big. 5b). E32 (Player 2) manages to grab 
more pieces from E0 and so, it manages to win the match 
leaving the E0 with only two pieces on the board. 
 

 
5a 

 
5b 

 
5c 
Figure 5.  Nine Men’s Morris Match. 

IV. CONCLUSIONS 
 

The resulting best estimators from PC vs. PC tournaments 
are able to play good matches also against human players 
and are better than the initial Defense and Offence 
estimators, although these are not based on defense or 
offense approaches. 

Although E0 was the best estimator in the first 
tournament, in the second one, the system has evolved 
towards the E1 model. Many values and genetic algorithm 
parameters were generated randomly, to obtain diversity. 
There could be performed several experiments like this one, 
the process of selection can be started over again for another 
group of estimators, and another “family” will be obtained. 
Combining the best estimators could lead to an even better 
PC Player.  
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